40 research outputs found

    Clec9a-mediated ablation of conventional dendritic cells suggests a lymphoid path to generating dendritic cells In Vivo

    Get PDF
    Conventional dendritic cells (cDCs) are versatile activators of immune responses that develop as part of the myeloid lineage downstream of hematopoietic stem cells. We have recently shown that in mice precursors of cDCs, but not of other leukocytes, are marked by expression of DNGR-1/CLEC9A. To genetically deplete DNGR-1-expressing cDC precursors and their progeny, we crossed Clec9a-Cre mice to Rosa-lox-STOP-lox-diphtheria toxin (DTA) mice. These mice develop signs of age-dependent myeloproliferative disease, as has been observed in other DC-deficient mouse models. However, despite efficient depletion of cDC progenitors in these mice, cells with phenotypic characteristics of cDCs populate the spleen. These cells are functionally and transcriptionally similar to cDCs in wild type control mice but show somatic rearrangements of Ig-heavy chain genes, characteristic of lymphoid origin cells. Our studies reveal a previously unappreciated developmental heterogeneity of cDCs and suggest that the lymphoid lineage can generate cells with features of cDCs when myeloid cDC progenitors are impaired

    Early monocyte response following local ablation in hepatocellular carcinoma

    Get PDF
    Local ablative therapies are established treatment modalities in the treatment of early- and intermediate-stage hepatocellular carcinoma (HCC). Systemic effects of local ablation on circulating immune cells may contribute to patients’ response. Depending on their activation, myeloid cells are able to trigger HCC progression as well as to support anti-tumor immunity. Certain priming of monocytes may already occur while still in the circulation. By using flow cytometry, we analyzed peripheral blood monocyte cell populations from a prospective clinical trial cohort of 21 HCC patients following interstitial brachytherapy (IBT) or radiofrequency ablation (RFA) and investigated alterations in the composition of monocyte subpopulations and monocytic myeloid-derived suppressor cells (mMDSCs) as well as receptors involved in orchestrating monocyte function. We discovered that mMDSC levels increased following both IBT and RFA in virtually all patients. Furthermore, we identified varying alterations in the level of monocyte subpopulations following radiation compared to RFA. (A) Liquid biopsy liquid biopsy of circulating monocytes in the future may provide information on the inflammatory response towards local ablation as part of an orchestrated immune response

    An integrated molecular risk score early in life for subsequent childhood asthma risk.

    Get PDF
    BACKGROUND Numerous children present with early wheeze symptoms, yet solely a subgroup develops childhood asthma. Early identification of children at risk is key for clinical monitoring, timely patient-tailored treatment, and preventing chronic, severe sequelae. For early prediction of childhood asthma, we aimed to define an integrated risk score combining established risk factors with genome-wide molecular markers at birth, complemented by subsequent clinical symptoms/diagnoses (wheezing, atopic dermatitis, food allergy). METHODS Three longitudinal birth cohorts (PAULINA/PAULCHEN, n = 190 + 93 = 283, PASTURE, n = 1133) were used to predict childhood asthma (age 5-11) including epidemiological characteristics and molecular markers: genotype, DNA methylation and mRNA expression (RNASeq/NanoString). Apparent (ap) and optimism-corrected (oc) performance (AUC/R2) was assessed leveraging evidence from independent studies (Naïve-Bayes approach) combined with high-dimensional logistic regression models (LASSO). RESULTS Asthma prediction with epidemiological characteristics at birth (maternal asthma, sex, farm environment) yielded an ocAUC = 0.65. Inclusion of molecular markers as predictors resulted in an improvement in apparent prediction performance, however, for optimism-corrected performance only a moderate increase was observed (upto ocAUC = 0.68). The greatest discriminate power was reached by adding the first symptoms/diagnosis (up to ocAUC = 0.76; increase of 0.08, p = .002). Longitudinal analysis of selected mRNA expression in PASTURE (cord blood, 1, 4.5, 6 years) showed that expression at age six had the strongest association with asthma and correlation of genes getting larger over time (r = .59, p < .001, 4.5-6 years). CONCLUSION Applying epidemiological predictors alone showed moderate predictive abilities. Molecular markers from birth modestly improved prediction. Allergic symptoms/diagnoses enhanced the power of prediction, which is important for clinical practice and for the design of future studies with molecular markers

    Extracellular heat shock protein 70 levels in tumour-bearing dogs and cats treated with radiation therapy and hyperthermia

    Get PDF
    Hyperthermia is a form of a cancer treatment which is frequently applied in combination with radiotherapy (RT) to improve therapy responses and radiosensitivity. The mode of action of hyperthermia is multifactorial; the one hand by altering the amount of the blood circulation in the treated tissue, on the other hand by modulating molecular pathways involved in cell survival processes and immunogenic interactions. One of the most dominant proteins induced by hyperthermia is the major stress-inducible heat shock protein 70 (Hsp70). Hsp70 can be found in the blood either as a free-protein (free HSP70) derived from necrotic cells, or lipid-bound (liposomal Hsp70) when it is actively released in extracellular vesicles (EVs) by living cells. The aim of the study was to evaluate the levels of free and liposomal Hsp70 before and after treatment with RT alone or hyperthermia combined with radiotherapy (HTRT) in dogs and cats to evaluate therapy responses. Peripheral blood was collected from feline and canine patients before and at 2, 4, 6 and 24 h after treatment with RT or HTRT. Hsp70 enzyme-linked immunosorbent assays (ELISAs) were performed to determine the free and liposomal Hsp70 concentrations in the serum. The levels were analysed after the first fraction of radiation to study immediate effects and after all applied fractions to study cumulative effects. The levels of free and liposomal Hsp70 levels in the circulation were not affected by the first singular treatment and cumulative effects of RT in cats however, after finalizing all treatment cycles with HTRT free and liposomal Hsp70 levels significantly increased. In dogs, HTRT, but not treatment with RT alone, significantly affected liposomal Hsp70 levels during the first fraction. Free Hsp70 levels were significantly increased after RT, but not HTRT, during the first fraction in dogs. In dogs, on the other hand, RT alone resulted in a significant increase in liposomal Hsp70, but HTRT did not significantly affect the liposomal Hsp70 when cumulative effects were analysed. Free Hsp70 was significantly induced in dogs after both, RT and HTRT when cumulative effects were analysed. RT and HTRT treatments differentially affect the levels of free and liposomal Hsp70 in dogs and cats. Both forms of Hsp70 could potentially be further investigated as potential liquid biopsy markers to study responses to RT and HTRT treatment in companion animals

    Childhood allergies: sensitization profile and cytokine patterns

    No full text

    Cell Identification by mass cytometry in childhood asthma - biaxial gating or unsupervised learning or both?

    No full text

    An Alternative to Classical Real-time Magnetic Field Measurements using a Magnet Model

    No full text
    Longitudinal and transverse beam control in circular accelerators depends critically on a reliable real-time knowledge of the magnetic bending field. Traditionally this is achieved with a long-measurement coil placed in a reference magnet. In the CERN PS Booster, such a measurement generates a 1 Gauss step-size train with an absolute precision of 0.1%. Modern magnet control can be done with a precision of 0.01%. Consequently, a synthesised magnetic field train based on a reliable magnet model could potentially yield a 10 times better result. The PSB will become a part of the injector chain for the future Large Hadron Collider (LHC). Therefore the main power supply of the PSB has been upgraded to full cycle control. This has made it possible to follow the entire magnetic cycle with a refined model, and to synthesise a real-time magnetic field train from a newly developed programmable pulse generator. We will discuss the general design concepts and the first results

    Influence of humidity on photochemical ozone generation with 172 nm xenon excimer lamps

    No full text
    The reaction kinetics of photochemical ozone (O3) generation in humid air and oxygen (O2) using efficient, narrow band vacuum ultra violet (VUV) 172 nm xenon excimer lamps is discussed. Trace amounts of water (H2O) vapor in the process gas leads to hydroxyl (OH) and hydroperoxy (HO2) radical formation. These radicals drive a catalytic O3 destruction cycle limiting O3 saturation concentration. This catalytic O3 destruction cycle was included into a quantitative kinetic model describing photochemical O3 production. Experimental O3 saturation concentrations obtained with coaxial VUV driven photochemical O3 generators compare satisfactorily with the models predictions
    corecore