7,198 research outputs found

    Hadronization Approach for a Quark-Gluon Plasma Formed in Relativistic Heavy Ion Collisions

    Full text link
    A transport model is developed to describe hadron emission from a strongly coupled quark-gluon plasma formed in relativistic heavy ion collisions. The quark-gluon plasma is controlled by ideal hydrodynamics, and the hadron motion is characterized by a transport equation with loss and gain terms. The two sets of equations are coupled to each other, and the hadronization hypersurface is determined by both the hydrodynamic evolution and the hadron emission. The model is applied to calculate the transverse momentum distributions of mesons and baryons, and most of the results agree well with the experimental data at RHIC.Comment: 16 pages, 24 figures. Version accepted by PR

    Reconstructed Jets at RHIC

    Full text link
    To precisely measure jets over a large background such as pile up in high luminosity p+p collisions at LHC, a new generation of jet reconstruction algorithms is developed. These algorithms are also applicable to reconstruct jets in the heavy ion environment where large event multiplicities are produced. Energy loss in the medium created in heavy ion collisions are already observed indirectly via inclusive hadron distributions and di-hadron correlations. Jets can be used to study this energy loss in detail with reduced biases. We review the latest results on jet-medium interactions as seen in A+A collisions at RHIC, focusing on the recent progress on jet reconstruction in heavy ion collisions.Comment: Proceedings for the 26th Winter Workshop on Nuclear Dynamic

    Resonance production in heavy ion collisions

    Full text link
    Recent results of resonance production from RHIC at sNN=\sqrt{s_{\rm NN}} = 200 GeV and SPS at sNN=\sqrt{s_{\rm NN}} = 17 GeV are presented and discussed in terms of the evolution and freeze-out conditions of a hot and dense fireball medium. Yields and spectra are compared with thermal model predictions at chemical freeze-out. Deviations in the low transverse momentum region of the resonance spectrum of the hadronic decay channel, suggest a strongly interaction hadronic phase between chemical and kinetic freeze-out. Microscopic models including resonance rescattering and regeneration are able to describe the trend of the data. The magnitude of the regeneration cross sections for different inverse decay channels are discussed. Model calculations which include elastic hadronic interactions between chemical freeze-out and thermal freeze-out based on the K(892)/K and Λ\Lambda(1520)/Λ\Lambda ratios suggest a time between two freeze-outs surfaces of Δτ>\Delta \tau> 4 fm/c. The difference in momentum distributions and yields for the ϕ\phi(1020) resonance reconstructed from the leptonic and hadronic decay channels at SPS energy are discussed taking into account the impact of a hadronic phase and possible medium modifications.Comment: 8 pages, 4 figures, conference proceedings (SQM2004

    What do we learn from Resonance Production in Heavy Ion Collisions?

    Full text link
    Resonances with their short life time and strong coupling to the dense and hot medium are suggested as a signature of the early stage of the fireball created in a heavy ion collision \cite{rap00,lut01,lut02}. The comparison of resonances with different lifetimes and quark contents may give information about time evolution and density and temperature of during the expanding of fireball medium. Resonances in elementary reactions have been measured since 1960. Resonance production in elementary collisions compared with heavy ion collisions where we expect to create a hot and dense medium may show the direct of influence of the medium on the resonances. This paper shows a selection of the recent resonance measurements from SPS and RHIC heavy ion colliders.Comment: 10 pages, 8 figures, HotQuarks 2004 conference proceeding

    Future Experiments in Relativistic Heavy Ion Collisions

    Full text link
    The measurements at RHIC have revealed a new state of matter, which needs to be further characterized in order to better understand its implications for the early evolution of the universe and QCD. I will show that, in the near future, complementary key measurements can be performed at RHIC, LHC, and FAIR. I will focus on results than can be obtained using identified particles, a probe which has been the basis for this conference over the past three decades. The sophisticated detectors, built and planned, for all three accelerator facilities enable us to measure leptons, photons, muons as well as hadrons and resonances of all flavors almost equally well, which makes these experiments unprecedented precision tools for the comprehensive understanding of the physics of the early universe.Comment: 10 pages, 4 figures, Proceedings for Summary Talk at SQM 2007, Levoca, Slovakia, June 24-29, 200

    A Short Review on Jet Identification

    Get PDF
    Jets can be used to probe the physical properties of the high energy density matter created in collisions at the Relativistic Heavy Ion Collider (RHIC). Measurements of strong suppression of inclusive hadron distributions and di-hadron correlations at high pTp_{T} have already provided evidence for partonic energy loss. However, these measurements suffer from well-known geometric biases due to the competition of energy loss and fragmentation. These biases can be avoided if the jets are reconstructed independently of their fragmentation details - quenched or unquenched. In this paper, we discuss modern jet reconstruction algorithms (cone and sequential recombination) and their corresponding background subtraction techniques required by the high multiplicities of heavy ion collisions. We review recent results from the STAR experiment at RHIC on direct jet reconstruction in central Au+Au collisions at sNN=200\sqrt {s_{NN}}= 200 GeV.Comment: Proceedings for the invited talk of Hot Quarks 2008, Estes Park, CO 18-23 August 200

    Strange Exotic States and Compact Stars

    Get PDF
    We discuss the possible appearance of strange exotic multi-quark states in the interior of neutron stars and signals for the existence of strange quark matter in the core of compact stars. We show how the in-medium properties of possible pentaquark states are constrained by pulsar mass measurements. The possibility of generating the observed large pulsar kick velocities by asymmetric emission of neutrinos from strange quark matter in magnetic fields is outlined.Comment: 10 pages, invited talk given at the International Conference on Strangeness in Quark Matter 2006 (SQM2006), UCLA, USA, March 26-31, 2006, Journal of Physics G in press, refs. adde

    Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at sNN=200\sqrt{s_{_{NN}}} = 200 GeV

    Get PDF
    Transverse momentum spectra of π±\pi^{\pm}, pp and pˉ\bar{p} up to 12 GeV/c at mid-rapidity in centrality selected Au+Au collisions at sNN=200\sqrt{s_{_{NN}}} = 200 GeV are presented. In central Au+Au collisions, both π±\pi^{\pm} and p(pˉ)p(\bar{p}) show significant suppression with respect to binary scaling at pT>p_T > 4 GeV/c. Protons and anti-protons are less suppressed than π±\pi^{\pm}, in the range 1.5 <pT<< p_{T} <6 GeV/c. The π/π+\pi^-/\pi^+ and pˉ/p\bar{p}/p ratios show at most a weak pTp_T dependence and no significant centrality dependence. The p/πp/\pi ratios in central Au+Au collisions approach the values in p+p and d+Au collisions at pT>p_T > 5 GeV/c. The results at high pTp_T indicate that the partonic sources of π±\pi^{\pm}, pp and pˉ\bar{p} have similar energy loss when traversing the nuclear medium.Comment: 6 pages, 4 figure

    Multiplicity and Pseudorapidity Distributions of Charged Particles and Photons at Forward Pseudorapidity in Au + Au Collisions at sqrt{s_NN} = 62.4 GeV

    Get PDF
    We present the centrality dependent measurement of multiplicity and pseudorapidity distributions of charged particles and photons in Au + Au collisions at sqrt{s_NN} = 62.4 GeV. The charged particles and photons are measured in the pseudorapidity region 2.9 < eta < 3.9 and 2.3 < eta < 3.7, respectively. We have studied the scaling of particle production with the number of participating nucleons and the number of binary collisions. The photon and charged particle production in the measured pseudorapidity range has been shown to be consistent with energy independent limiting fragmentation behavior. The photons are observed to follow a centrality independent limiting fragmentation behavior while for the charged particles it is centrality dependent. We have carried out a comparative study of the pseudorapidity distributions of positively charged hadrons, negatively charged hadrons, photons, pions, net protons in nucleus--nucleus collisions and pseudorapidity distributions from p+p collisions. From these comparisons we conclude that baryons in the inclusive charged particle distribution are responsible for the observed centrality dependence of limiting fragmentation. The mesons are found to follow an energy independent behavior of limiting fragmentation while the behavior of baryons seems to be energy dependent.Comment: 17 pages and 20 figure

    Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV

    Get PDF
    We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.Comment: 7 pages, 4 figures + 1 tabl
    corecore