19 research outputs found

    Autoantibodies against type I IFNs in patients with critical influenza pneumonia

    Full text link
    In an international cohort of 279 patients with hypoxemic influenza pneumonia, we identified 13 patients (4.6%) with autoantibodies neutralizing IFN-alpha and/or -omega, which were previously reported to underlie 15% cases of life-threatening COVID-19 pneumonia and one third of severe adverse reactions to live-attenuated yellow fever vaccine. Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-alpha 2 alone (five patients) or with IFN-omega (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-alpha 2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-omega. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-alpha 2 and IFN-omega (OR = 11.7, P = 1.3 x 10(-5)), especially those <70 yr old (OR = 139.9, P = 3.1 x 10(-10)). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for similar to 5% of cases of life-threatening influenza pneumonia in patients <70 yr old

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    SignificanceThere is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged 4% of those >70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals <70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals <40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.The Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute; The Rockefeller University; the St. Giles Foundation; the NIH (Grants R01AI088364 and R01AI163029); the National Center for Advancing Translational Sciences; NIH Clinical and Translational Science Awards program (Grant UL1 TR001866); a Fast Grant from Emergent Ventures; Mercatus Center at George Mason University; the Yale Center for Mendelian Genomics and the Genome Sequencing Program Coordinating Center funded by the National Human Genome Research Institute (Grants UM1HG006504 and U24HG008956); the Yale High Performance Computing Center (Grant S10OD018521); the Fisher Center for Alzheimer’s Research Foundation; the Meyer Foundation; the JPB Foundation; the French National Research Agency (ANR) under the “Investments for the Future” program (Grant ANR-10-IAHU-01); the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (Grant ANR-10-LABX-62-IBEID); the French Foundation for Medical Research (FRM) (Grant EQU201903007798); the French Agency for Research on AIDS and Viral hepatitis (ANRS) Nord-Sud (Grant ANRS-COV05); the ANR GENVIR (Grant ANR-20-CE93-003), AABIFNCOV (Grant ANR-20-CO11-0001), CNSVIRGEN (Grant ANR-19-CE15-0009-01), and GenMIS-C (Grant ANR-21-COVR-0039) projects; the Square Foundation; Grandir–Fonds de solidarité pour l’Enfance; the Fondation du Souffle; the SCOR Corporate Foundation for Science; The French Ministry of Higher Education, Research, and Innovation (Grant MESRI-COVID-19); Institut National de la Santé et de la Recherche Médicale (INSERM), REACTing-INSERM; and the University Paris Cité. P. Bastard was supported by the FRM (Award EA20170638020). P. Bastard., J.R., and T.L.V. were supported by the MD-PhD program of the Imagine Institute (with the support of Fondation Bettencourt Schueller). Work at the Neurometabolic Disease lab received funding from Centre for Biomedical Research on Rare Diseases (CIBERER) (Grant ACCI20-767) and the European Union's Horizon 2020 research and innovation program under grant agreement 824110 (EASI Genomics). Work in the Laboratory of Virology and Infectious Disease was supported by the NIH (Grants P01AI138398-S1, 2U19AI111825, and R01AI091707-10S1), a George Mason University Fast Grant, and the G. Harold and Leila Y. Mathers Charitable Foundation. The Infanta Leonor University Hospital supported the research of the Department of Internal Medicine and Allergology. The French COVID Cohort study group was sponsored by INSERM and supported by the REACTing consortium and by a grant from the French Ministry of Health (Grant PHRC 20-0424). The Cov-Contact Cohort was supported by the REACTing consortium, the French Ministry of Health, and the European Commission (Grant RECOVER WP 6). This work was also partly supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research, NIH (Grants ZIA AI001270 to L.D.N. and 1ZIAAI001265 to H.C.S.). This program is supported by the Agence Nationale de la Recherche (Grant ANR-10-LABX-69-01). K.K.’s group was supported by the Estonian Research Council, through Grants PRG117 and PRG377. R.H. was supported by an Al Jalila Foundation Seed Grant (Grant AJF202019), Dubai, United Arab Emirates, and a COVID-19 research grant (Grant CoV19-0307) from the University of Sharjah, United Arab Emirates. S.G.T. is supported by Investigator and Program Grants awarded by the National Health and Medical Research Council of Australia and a University of New South Wales COVID Rapid Response Initiative Grant. L.I. reports funding from Regione Lombardia, Italy (project “Risposta immune in pazienti con COVID-19 e co-morbidità”). This research was partially supported by the Instituto de Salud Carlos III (Grant COV20/0968). J.R.H. reports funding from Biomedical Advanced Research and Development Authority (Grant HHSO10201600031C). S.O. reports funding from Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development (Grant JP20fk0108531). G.G. was supported by the ANR Flash COVID-19 program and SARS-CoV-2 Program of the Faculty of Medicine from Sorbonne University iCOVID programs. The 3C Study was conducted under a partnership agreement between INSERM, Victor Segalen Bordeaux 2 University, and Sanofi-Aventis. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also supported by the Caisse Nationale d’Assurance Maladie des Travailleurs Salariés, Direction générale de la Santé, Mutuelle Générale de l’Education Nationale, Institut de la Longévité, Conseils Régionaux of Aquitaine and Bourgogne, Fondation de France, and Ministry of Research–INSERM Program “Cohortes et collections de données biologiques.” S. Debette was supported by the University of Bordeaux Initiative of Excellence. P.K.G. reports funding from the National Cancer Institute, NIH, under Contract 75N91019D00024, Task Order 75N91021F00001. J.W. is supported by a Research Foundation - Flanders (FWO) Fundamental Clinical Mandate (Grant 1833317N). Sample processing at IrsiCaixa was possible thanks to the crowdfunding initiative YoMeCorono. Work at Vall d’Hebron was also partly supported by research funding from Instituto de Salud Carlos III Grant PI17/00660 cofinanced by the European Regional Development Fund (ERDF/FEDER). C.R.-G. and colleagues from the Canarian Health System Sequencing Hub were supported by the Instituto de Salud Carlos III (Grants COV20_01333 and COV20_01334), the Spanish Ministry for Science and Innovation (RTC-2017-6471-1; AEI/FEDER, European Union), Fundación DISA (Grants OA18/017 and OA20/024), and Cabildo Insular de Tenerife (Grants CGIEU0000219140 and “Apuestas científicas del ITER para colaborar en la lucha contra la COVID-19”). T.H.M. was supported by grants from the Novo Nordisk Foundation (Grants NNF20OC0064890 and NNF21OC0067157). C.M.B. is supported by a Michael Smith Foundation for Health Research Health Professional-Investigator Award. P.Q.H. and L. Hammarström were funded by the European Union’s Horizon 2020 research and innovation program (Antibody Therapy Against Coronavirus consortium, Grant 101003650). Work at Y.-L.L.’s laboratory in the University of Hong Kong (HKU) was supported by the Society for the Relief of Disabled Children. MBBS/PhD study of D.L. in HKU was supported by the Croucher Foundation. J.L.F. was supported in part by the Evaluation-Orientation de la Coopération Scientifique (ECOS) Nord - Coopération Scientifique France-Colombie (ECOS-Nord/Columbian Administrative department of Science, Technology and Innovation [COLCIENCIAS]/Colombian Ministry of National Education [MEN]/Colombian Institute of Educational Credit and Technical Studies Abroad [ICETEX, Grant 806-2018] and Colciencias Contract 713-2016 [Code 111574455633]). A. Klocperk was, in part, supported by Grants NU20-05-00282 and NV18-05-00162 issued by the Czech Health Research Council and Ministry of Health, Czech Republic. L.P. was funded by Program Project COVID-19 OSR-UniSR and Ministero della Salute (Grant COVID-2020-12371617). I.M. is a Senior Clinical Investigator at the Research Foundation–Flanders and is supported by the CSL Behring Chair of Primary Immunodeficiencies (PID); by the Katholieke Universiteit Leuven C1 Grant C16/18/007; by a Flanders Institute for Biotechnology-Grand Challenges - PID grant; by the FWO Grants G0C8517N, G0B5120N, and G0E8420N; and by the Jeffrey Modell Foundation. I.M. has received funding under the European Union’s Horizon 2020 research and innovation program (Grant Agreement 948959). E.A. received funding from the Hellenic Foundation for Research and Innovation (Grant INTERFLU 1574). M. Vidigal received funding from the São Paulo Research Foundation (Grant 2020/09702-1) and JBS SA (Grant 69004). The NH-COVAIR study group consortium was supported by a grant from the Meath Foundation.Peer reviewe

    Les Mécanismes Moléculaires et Cellulaires de l'Up-regulation par la Nicotine de son Propre Récepteur

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Nicotine enhances intracellular nicotinic receptor maturation: a novel mechanism of neural plasticity?

    No full text
    International audienceNicotine addiction, the primary cause of tobacco consumption, is mediated through nicotine binding to brain nicotinic acetylcholine receptor (nAChRs). Upon chronic exposure, nicotine elicits a cascade of events, starting with nAChR activation and desensitization, followed by a long term up-regulation that corresponds to an increase in the number of the high affinity nAChRs, a paradoxical process that occurs in the brain of smokers. Recent investigation of the maturation and trafficking of the major brain alpha4beta2 nAChR demonstrates that up-regulation is initiated in the endoplasmic reticulum soon after protein translation. The data thus far accumulated provide evidence that nicotine elicits up-regulation by promoting maturation of nAChR precursors that would otherwise be degraded. This "maturational enhancer" action of nicotine probably contributes to the long term effect of chronic nicotine, and suggests a novel mechanism of neuronal plasticity through an yet unknown endogenous substance which would modulate the receptor expression under physiological conditions

    A novel mechanism of neural plasticity?

    No full text
    Nicotine enhances intracellular nicotinic receptor maturation

    Nicotine Upregulates Its Own Receptors through Enhanced Intracellular Maturation

    No full text
    and Pierre Jean Corringer * The neuronal nAChRs subject to upregulation are CNRS URA D2182 Récepteurs et Cognition pseudosymmetrical heteropentameric ion channels re-Institut Pasteur sulting from the assembly of principal (α2, α3, α4, α6) 25 rue du Dr. Roux and complementary (β2, β4) subunits. At the concentra-75724 Paris Cedex 15 tions of nicotine found in the brain of smokers (low France micromolar range), the highly expressed α4β2 receptors display the highest level of upregulation (Nguyen et al., 2003). Since receptors containing the β2 subunits are the most important for nicotine self-administration Summary in mice (Picciotto et al., 1998), it is likely that their upregulation contributes to the long-term effect of Chronic exposure to nicotine elicits upregulation of chronic nicotine and potentially to nicotine addiction high-affinity nicotinic receptors in the smoker’s brain

    Hemodialysis patients with diabetes eat less than those without: a plea for a permissive diet

    No full text
    International audienceThe main cause of malnutrition in hemodialysis patients is a spontaneous decline in energy and protein intakes. This study aims to report the dietary energy intake (DEI), dietary protein intake (DPI), and dietary micronutrient intake in a French HD population, to report factors associated with a low DPI and DEI, and to analyze if nutritional intake was correlated with nutritional status.We conducted an observational cross-sectional study in a hemodialysis population of 87 adult patients in July 2014. Daily nutritional oral intake, handgrip strength, body composition measured by bioimpedancemetry, and biological and dialysis parameters were obtained from medical records. Statistical analyses of parameters associated with DEI and DPI were performed.The median age (interquartile range) of the population was 77.3[71.1; 84.8] years, 57.5% were men, and 52.9% had diabetes mellitus. Median weight-adjusted DEI was 18.4[15.7;22.3]kcal/kg/day (1308 [1078; 1569] kcal/day), and median weight-adjusted DPI was 0.80[0.66; 0.96] g/kg/day (57.5[47.1; 66.8] g/day). In multivariate analysis, weight-adjusted DEI was statistically lower in patients with diabetes (coefficient [95%CI] -3.81[-5.21;-2.41] kcal/kg/day; p = 0.01) but was not associated with the others parameters. When DEI was not adjusted for weight, diabetes was no longer associated with DEI, but female gender (-178[-259;-961] kcal/day; p = 0.03) and a higher Charlson comorbidity index (-30[-44;-15]; p = 0.04) were associated with a lower calorie intake. Results for DPI were similar except that the Charlson comorbidity index did not reach significance.Diabetes is an important factor associated with low dietary intake in hemodialysis patients. Restrictive regimens should be prescribed cautiously in hemodialysis patients, especially in those with diabetes

    Nicotine upregulates its own receptors through enhanced intracellular maturation.

    Get PDF
    International audienceChronic exposure to nicotine elicits upregulation of high-affinity nicotinic receptors in the smoker's brain. To address the molecular mechanism of upregulation, we transfected HEK293 cells with human alpha4beta2 receptors and traced the subunits throughout their intracellular biosynthesis, using metabolic labeling and immunoprecipitation techniques. We show that high-mannose glycosylated subunits mature and assemble into pentamers in the endoplasmic reticulum and that only pentameric receptors reach the cell surface following carbohydrate processing. Nicotine is shown to act inside the cell and to increase the amount of beta subunits immunoprecipitated by the conformation-dependent mAb290, indicating that nicotine enhances a critical step in the intracellular maturation of these receptors. This effect, which also takes place at concentrations of nicotine found in the blood of smokers upon expression of alpha4beta2 in SH-SY5Y neuroblastoma cells, may play a crucial role in nicotine addiction and possibly implement a model of neural plasticity

    An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine.

    No full text
    International audienceIn smoker's brain, rodent brain, and in cultured cells expressing nicotinic receptors, chronic nicotine treatment induces an increase in the total number of high affinity receptors for acetylcholine and nicotine, a process referred to as up-regulation. Up-regulation induced by 1 mm nicotine reaches 6-fold for alpha3beta2 nicotinic receptors transiently expressed in HEK 293 cells, whereas it is much smaller for alpha3beta4 receptors, offering a rationale to investigate the molecular mechanism underlying up-regulation. In this expression system binding sites are mainly intracellular, as shown by [(3)H]epibatidine binding experiments and competition with the impermeant ligand carbamylcholine. Systematic analysis of beta2/beta4 chimeras demonstrates the following. (i) The extracellular domain critically contributes to up-regulation. (ii) Only residues belonging to two beta2 segments, 74-89 and 106-115, confer up-regulation to beta4, mainly by decreasing the amount of binding sites in the absence of nicotine; on an atomic three-dimensional model of the alpha3beta2 receptor these amino acids form a compact microdomain that mainly contributes to the subunit interface and also faces the acetylcholine binding site. (iii) The beta4 microdomain is sufficient to confer to beta2 a beta4-like up-regulation. (iv) This microdomain makes an equivalent contribution to the up-regulation differences between alpha4beta2 and alpha4beta4. We propose that nicotine, by binding to immature oligomers, elicits a conformational reorganization of the microdomain, strengthening the interaction between adjacent subunits and, thus, facilitating maturation processes toward high affinity receptors. This mechanism may be central to nicotine addiction, since alpha4beta2 is the subtype exhibiting the highest degree of up-regulation in the brain
    corecore