14 research outputs found
A Self-Learning Neural Network Approach for RFI Detection and Removal in Radio Astronomy
We present a novel neural network (NN) method for the detection and removal
of Radio Frequency Interference (RFI) from the raw digitized signal in the
signal processing chain of a typical radio astronomy experiment. The main
advantage of our method is that it does not require a training set. Instead,
our method relies on the fact that the true signal of interest coming from
astronomical sources is thermal and therefore described as a Gaussian random
process, which cannot be compressed. We employ a variational encoder/decoder
network to find the compressible information in the datastream that can explain
the most variance with the fewest degrees of freedom. We demonstrate it on a
set of toy problems and stored ringbuffers from the Baryon Mapping eXperiment
(BMX) prototype. We find that the RFI subtraction is effective at cleaning
simulated timestreams: while we find that the power spectra of the RFI-cleaned
timestreams output by the NN suffer from extra signal consistent with additive
noise, we find that it is generally around percent level across the band and
sub 10 percent in contaminated spectral channels even when RFI power is an
order of magnitude larger than the signal. We discuss advantages and
limitations of this method and possible implementation in the front-end of
future radio experiments.Comment: 16 pages, 6 figures, Accepted for publication in PAS
The Hydrogen Epoch of Reionization Array Dish I: Beam Pattern Measurements and Science Implications
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer
aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen
from the Epoch of Reionization (EOR). Drawing on lessons from the Murchison
Widefield Array (MWA) and the Precision Array for Probing the Epoch of
Reionization (PAPER), HERA is a hexagonal array of large (14 m diameter) dishes
with suspended dipole feeds. Not only does the dish determine overall
sensitivity, it affects the observed frequency structure of foregrounds in the
interferometer. This is the first of a series of four papers characterizing the
frequency and angular response of the dish with simulations and measurements.
We focus in this paper on the angular response (i.e., power pattern), which
sets the relative weighting between sky regions of high and low delay, and
thus, apparent source frequency structure. We measure the angular response at
137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a
collecting area of 93 m^2 in the optimal dish/feed configuration, implying
HERA-320 should detect the EOR power spectrum at z~9 with a signal-to-noise
ratio of 12.7 using a foreground avoidance approach with a single season of
observations, and 74.3 using a foreground subtraction approach. Lastly we study
the impact of these beam measurements on the distribution of foregrounds in
Fourier space.Comment: 13 pages, 9 figures. Replaced to match accepted ApJ versio
Design and implementation of a noise temperature measurement system for the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX)
This paper describes the design, implementation, and verification of a
test-bed for determining the noise temperature of radio antennas operating
between 400-800MHz. The requirements for this test-bed were driven by the HIRAX
experiment, which uses antennas with embedded amplification, making system
noise characterization difficult in the laboratory. The test-bed consists of
two large cylindrical cavities, each containing radio-frequency (RF) absorber
held at different temperatures (300K and 77K), allowing a measurement of system
noise temperature through the well-known 'Y-factor' method. The apparatus has
been constructed at Yale, and over the course of the past year has undergone
detailed verification measurements. To date, three preliminary noise
temperature measurement sets have been conducted using the system, putting us
on track to make the first noise temperature measurements of the HIRAX feed and
perform the first analysis of feed repeatability.Comment: 19 pages, 12 figure
Science from an Ultra-Deep, High-Resolution Millimeter-Wave Survey
Opening up a new window of millimeter-wave observations that span frequency
bands in the range of 30 to 500 GHz, survey half the sky, and are both an order
of magnitude deeper (about 0.5 uK-arcmin) and of higher-resolution (about 10
arcseconds) than currently funded surveys would yield an enormous gain in
understanding of both fundamental physics and astrophysics. In particular, such
a survey would allow for major advances in measuring the distribution of dark
matter and gas on small-scales, and yield needed insight on 1.) dark matter
particle properties, 2.) the evolution of gas and galaxies, 3.) new light
particle species, 4.) the epoch of inflation, and 5.) the census of bodies
orbiting in the outer Solar System.Comment: 5 pages + references; Submitted to the Astro2020 call for science
white paper
Mechanical and Optical Design of the HIRAX Radio Telescope
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a planned interferometric radio telescope array that will ultimately consist of 1024 close packed 6 m dishes that will be deployed at the SKA South Africa site. HIRAX will survey the majority of the southern sky to measure baryon acoustic oscillations (BAO) using the 21 cm hyperfine transition of neutral hydrogen. It will operate between 400-800 MHz with 391 kHz resolution, corresponding to a redshift range of and a minimum of ~0.003. One of the primary science goals of HIRAX is to constrain the dark energy equation of state by measuring the BAO scale as a function of redshift over a cosmologically significant range. Achieving this goal places stringent requirements on the mechanical and optical design of the HIRAX instrument which are described in this paper. This includes the simulations used to optimize the instrument, including the dish focal ratio, receiver support mechanism, and instrument cabling. As a result of these simulations, the dish focal ratio has been reduced to 0.23 to reduce inter-dish crosstalk, the feed support mechanism has been redesigned as a wide (35 cm diam.) central column, and the feed design has been modified to allow the cabling for the receiver to pass directly along the symmetry axis of the feed and dish in order to eliminate beam asymmetries and reduce sidelobe amplitudes. The beams from these full-instrument simulations are also used in an astrophysical m-mode analysis pipeline which is used to evaluate cosmological constraints and determine potential systematic contamination due to physical non-redundancies of the array elements. This end-to-end simulation pipeline was used to inform the dish manufacturing and assembly specifications which will guide the production and construction of the first-stage HIRAX 256-element array
Antenna characterization for the HIRAX experiment
The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) aims to improve constraints on the dark energy equation of state through measurements of large-scale structure at high redshift (0.8 700MHz. Noise temperature measurements of the HIRAX feeds were performed in a custom apparatus built at Yale. In this system, identical loads, one cryogenic and the other at room temperature, are used to take a differential (Y-factor) measurement from which the noise of the system is inferred. Several measurement sets have been conducted using the system, involving CHIME feeds as well as four of the HIRAX active feeds. These measurements give the first noise temperature measurements of the HIRAX feed, revealing a similar to 60K noise temperature (relative to 30K target) with 40K peak- to-peak frequency-dependent features, and provide the first demonstration of feed repeatability. Both findings inform current and future feed designs.LASTR
Recommended from our members
Science from an Ultra-Deep, High-Resolution Millimeter-Wave Survey
Opening up a new window of millimeter-wave observations that span frequency
bands in the range of 30 to 500 GHz, survey half the sky, and are both an order
of magnitude deeper (about 0.5 uK-arcmin) and of higher-resolution (about 10
arcseconds) than currently funded surveys would yield an enormous gain in
understanding of both fundamental physics and astrophysics. In particular, such
a survey would allow for major advances in measuring the distribution of dark
matter and gas on small-scales, and yield needed insight on 1.) dark matter
particle properties, 2.) the evolution of gas and galaxies, 3.) new light
particle species, 4.) the epoch of inflation, and 5.) the census of bodies
orbiting in the outer Solar System