8,039 research outputs found

    Thermal conductance measurements of pressed OFHC copper contacts at liquid helium temperatures

    Get PDF
    The thermal conductance of oxygen-free high conductivity (OFHC) copper sample pairs with surface finishes ranging from 0.1 to 1.6-micrometers rms roughness was investigated over the range of 1.6 to 6.0-K under applied contact forces up to 670 N. The thermal conductance increases with increasing contact force; however, no correlation can be drawn with respect to surface finish

    Thermal conductance of pressed contacts at liquid helium temperatures

    Get PDF
    The thermal contact conductance of a 0.4 micrometer surface finish OFHC copper sample pair has been investigated from 1.6 to 3.8 K for a range of applied contact forces up to 670 N. Experimental data have been fitted to the relation Q = the integral alpha T to the nth power dt by assuming that the thermal contact conductance is a simple power function of the sample temperature. It has been found that the conductance is proportional to T squared and that conductance increases with an increase in applied contact force. These results confirm earlier work

    Ratchet-like dynamics of fluxons in annular Josephson junctions driven by bi-harmonic microwave fields

    Full text link
    Experimental observation of the unidirectional motion of a topological soliton driven by a bi-harmonic ac force of zero mean is reported. The observation is made by measuring the current-voltage characteristics for a fluxon trapped in an annular Josephson junction that was placed into a microwave field. The measured dependence of the fluxon mean velocity (rectified voltage) at zero dc bias versus the phase shift between the first and second harmonic of the driving force is in qualitative agreement with theoretical expectations.Comment: 6 figure

    Thermal conductance of pressed aluminum and stainless steel contacts at liquid helium temperatures

    Get PDF
    The thermal conductance of aluminum and stainless steel 304 sample pairs with surface finishes ranging from 0.1 to 1.6 microns rms roughness was investigated over a temperature range from 1.6 to 6.0 k. The thermal conductance follows a simple power law function of temperature, with the exponent ranging from 0.5 to 2.25, increases asymptotically with increasing applied force, and exhibits an anomaly for surface finishes in the 0.4 micron region

    Whose Turn Is It? Problems of Reconciling Family and Work in Dual-Career Couples.

    Get PDF
    The work-family life conflict affects various aspects of dual-career families. Parenthood and the work-family life balance lead to an overload of responsibility and disparity at the expense of women, on a private as well as on a social level. In our research, we examined WIF (work to family) and FIW (family to work) conflicts in a sample of 483 dual-career couples. The main results underline an increase in familiar duties concerning child birth and childcare, as associated with the traditional work-family life balance strategy. The data seems to reflect differences in traditional roles between public-male- breadwinner and private-female-homemaker

    Compactons in Nonlinear Schr\"odinger Lattices with Strong Nonlinearity Management

    Full text link
    The existence of compactons in the discrete nonlinear Schr\"odinger equation in the presence of fast periodic time modulations of the nonlinearity is demonstrated. In the averaged DNLS equation the resulting effective inter-well tunneling depends on modulation parameters {\it and} on the field amplitude. This introduces nonlinear dispersion in the system and can lead to a prototypical realization of single- or multi-site stable discrete compactons in nonlinear optical waveguide and BEC arrays. These structures can dynamically arise out of Gaussian or compactly supported initial data.Comment: 4 pages, 4 figure

    Three dimensional imaging of short pulses

    Full text link
    We exploit a slightly noncollinear second-harmonic cross-correlation scheme to map the 3D space-time intensity distribution of an unknown complex-shaped ultrashort optical pulse. We show the capability of the technique to reconstruct both the amplitude and the phase of the field through the coherence of the nonlinear interaction down to a resolution of 10 μ\mum in space and 200 fs in time. This implies that the concept of second-harmonic holography can be employed down to the sub-ps time scale, and used to discuss the features of the technique in terms of the reconstructed fields.Comment: 16 pages, 6 figure
    corecore