1,015 research outputs found

    The Tully-Fisher relation of distant field galaxies

    Full text link
    We examine the evolution of the Tully-Fisher relation (TFR) using a sample of 89 field spirals, with 0.1 < z < 1, for which we have measured confident rotation velocities (Vrot). By plotting the residuals from the local TFR versus redshift, or alternatively fitting the TFR to our data in several redshift bins, we find evidence that luminous spiral galaxies are increasingly offset from the local TFR with redshift, reaching a brightening of -1.0+-0.5 mag, for a given Vrot, by approximately z = 1. Since selection effects would generally increase the fraction of intrinsically-bright galaxies at higher redshifts, we argue that the observed evolution is probably an upper limit. Previous studies have used an observed correlation between the TFR residuals and Vrot to argue that low mass galaxies have evolved significantly more than those with higher mass. However, we demonstrate that such a correlation may exist purely due to an intrinsic coupling between the Vrot scatter and TFR residuals, acting in combination with the TFR scatter and restrictions on the magnitude range of the data, and therefore it does not necessarily indicate a physical difference in the evolution of galaxies with different Vrot. Finally, if we interpret the luminosity evolution derived from the TFR as due to the evolution of the star formation rate (SFR) in these luminous spiral galaxies, we find that SFR(z) is proportional to (1+z)^(1.7+-1.1), slower than commonly derived for the overall field galaxy population. This suggests that the rapid evolution in the SFR density of the universe observed since approximately z = 1 is not driven by the evolution of the SFR in individual bright spiral galaxies. (Abridged.)Comment: 14 pages, 10 figures, accepted by MNRA

    Clustering of red Galaxies near the Radio-loud Quasar 1335.8+2834 at z=1.1

    Get PDF
    We have obtained new deep optical and near-infrared images of the field of the radio-loud quasar 1335.8+2834 at z=1.086z=1.086 where an excess in the surface number density of galaxies was reported by Hutchings et al. [AJ, 106, 1324] from optical data. We found a significant clustering of objects with very red optical-near infrared colors, 4RK64 \lesssim R-K \lesssim 6 and 3IK53 \lesssim I-K \lesssim 5 near the quasar. The colors and magnitudes of the reddest objects are consistent with those of old (12 Gyr old at z=0) passively-evolving elliptical galaxies seen at z=1.1z=1.1, clearly defining a `red envelope' like that found in galaxy clusters at similar or lower redshifts. This evidence strongly suggests that the quasar resides in a moderately-rich cluster of galaxies (richness-class 0\geq 0). There is also a relatively large fraction of objects with moderately red colors (3.5<RK<4.53.5 < R-K < 4.5) which have a distribution on the sky similar to that of the reddest objects. They may be interpreted as cluster galaxies with some recent or on-going star formation.Comment: 14 pages text, 5 PostScript figures, 1 GIF figure, and 1 combined PS file. Accepted for ApJ, Letter

    Morphology-dependent trends of galaxy age with environment in Abell 901/902 seen with COMBO-17

    Get PDF
    We investigate correlations between galaxy age and environment in the Abell 901/2 supercluster for separate morphologies. Using COMBO-17 data, we define a sample of 530 galaxies, complete at MV5logh<18M_V -5\log h<-18 on an area of 3.5×3.53.5\times 3.5 (Mpc/hh)2^2. We explore several age indicators including an extinction-corrected residual from the colour-magnitude relation (CMR). As a result, we find a clear trend of age with density for galaxies of all morphologies that include a spheroidal component, in the sense that galaxies in denser environments are older. This trend is not seen among Scd/Irr galaxies since they all have young ages. However, the trend among the other types is stronger for fainter galaxies. While we also see an expected age-morphology relation, we find no evidence for a morphology-density relation at fixed age.Comment: Accepted for publication in MNRAS (Letters

    Star formation rates and chemical abundances of emission line galaxies in intermediate-redshift clusters

    Full text link
    We examine the evolutionary status of luminous, star-forming galaxies in intermediate-redshift clusters by considering their star formation rates and the chemical and ionsiation properties of their interstellar emitting gas. Our sample consists of 17 massive, star-forming, mostly disk galaxies with M_{B}<-20, in clusters with redshifts in the range 0.31< z <0.59, with a median of =0.42. We compare these galaxies with the identically selected and analysed intermediate-redshift field sample of Mouhcine et al. (2006), and with local galaxies from the Nearby Field Galaxy Survey of Jansen et al. (2000). From our optical spectra we measure the equivalent widths of OII, Hbeta and OIII emission lines to determine diagnostic line ratios, oxygen abundances, and extinction-corrected star formation rates. The star-forming galaxies in intermediate-redshift clusters display emission line equivalent widths which are, on average, significantly smaller than measured for field galaxies at comparable redshifts. However, a contrasting fraction of our cluster galaxies have equivalent widths similar to the highest observed in the field. This tentatively suggests a bimodality in the star-formation rates per unit luminosity for galaxies in distant clusters. We find no evidence for further bimodalities, or differences between our cluster and field samples, when examining additional diagnostics and the oxygen abundances of our galaxies. This maybe because no such differences exist, perhaps because the cluster galaxies which still display signs of star-formation have recently arrived from the field. In order to examine this topic with more certainty, and to further investigate the way in which any disparity varies as a function of cluster properties, larger spectroscopic samples are needed.Comment: 10 pages, 6 figures, MNRAS in pres

    Evolution of Cluster Ellipticals at 0.2 < z < 1.2 from Hubble Space Telescope Imaging

    Get PDF
    Two-dimensional surface photometry derived from Hubble Space Telescope imaging is presented for a sample of 225 early-type galaxies (assumed to be cluster members) in the fields of 9 clusters at redshifts 0.17<z<1.210.17 < z < 1.21. The 94 luminous ellipticals (MAB(B)<20M_{AB}(B)<-20; selected by morphology alone with no reference to color) form tight sequences in the size-luminosity plane. The position of these sequences shifts, on average, with redshift so that an object of a given size at z=0.55 is brighter by ΔM(B)=0.57±0.13\Delta M(B)=-0.57 \pm 0.13 mag than its counterpart (measured with the same techniques) in nearby clusters. At z=0.9 the shift is ΔM(B)=0.96±0.22\Delta M(B)=-0.96 \pm 0.22 mag. If the relation between size and luminosity is universal so that the local cluster galaxies represent the evolutionary endpoints of those at high redshift, and if the size-luminosity relation is not modified by dynamical processes then this population of galaxies has undergone significant luminosity evolution since z=1 consistent with expectations based on models of passively evolving, old stellar populations.Comment: 7 pages, 3 figures, and 1 Tabl

    The Tully-Fisher relation of intermediate redshift field and cluster galaxies from Subaru spectroscopy

    Full text link
    We have carried out spectroscopic observations in 4 cluster fields using Subaru's FOCAS multi-slit spectrograph and obtained spectra for 103 bright disk field and cluster galaxies at 0.06z1.200.06 \le z \le 1.20. Seventy-seven of these show emission lines, and 33 provide reasonably-secure determinations of the galaxies' rotation velocity. The rotation velocities, luminosities, colours and emission-line properties of these galaxies are used to study the possible effects of the cluster environment on the star-formation history of the galaxies. Comparing the Tully-Fisher relations of cluster and field galaxies at similar reshifts we find no measurable difference in rest-frame BB-band luminosity at a given rotation velocity (the formal difference is 0.18±0.330.18\pm0.33 mag). The colours of the cluster emission line galaxies are only marginally redder in rest-frame BVB-V (by 0.06±0.040.06\pm0.04 mag) than the field galaxies in our sample. Taken at face value, these results seem to indicate that bright star-forming cluster spirals are similar to their field counterparts in their star-formation properties. However, we find that the fraction of disk galaxies with absorption-line spectra (i.e., with no current star formation) is larger in clusters than in the field by a factor of 3\sim3--5. This suggests that the cluster environment has the overall effect of switching off star formation in (at least) some spiral galaxies. To interpret these observational results, we carry out simulations of the possible effects of the cluster environment on the star-formation history of disk galaxies and thus their photometric and spectroscopic properties. Finally, we evaluate the evolution of the rest-frame absolute BB-band magnitude per unit redshift at fixed rotation velocity.Comment: 21 pages, 13 figures, accepted for publication in MNRA

    The host galaxy of GRB010222: The strongest damped Lyman-alpha system known

    Get PDF
    Analysis of the absorption lines in the afterglow spectrum of the gamma-ray burst GRB010222 indicates that its host galaxy (at a redshift of z=1.476) is the strongest damped Lyman-alpha (DLA) system known, having a very low metallicity and modest dust content. This conclusion is based on the detection of the red wing of Lyman-alpha plus a comparison of the equivalent widths of ultraviolet Mg I, Mg II, and Fe II lines with those in other DLAs. The column density of H I, deduced from a fit to the wing of Lyman-alpha, is (5 +/- 2) 10^22 cm^-2. The ratio of the column densities of Zn and Cr lines suggests that the dust content in our line of sight through the galaxy is low. This could be due to either dust destruction by the ultraviolet emission of the afterglow or to an initial dust composition different to that of the diffuse interstellar material, or a combination of both.Comment: Submitted to MNRAS 12 page

    The sizes of disc galaxies in intermediate-redshift clusters

    Get PDF
    We examine how the location of star formation within disc galaxies depends on environment at intermediate redshift. This is achieved by comparing emission-line (r_em) and restframe B-band (r_B) scalelengths for matched samples of 50 field and 19 cluster star-forming, disc galaxies, with 0.25 < z < 1.0 and M_B < -19.5 mag. We find that at a given r_B the majority of our cluster galaxies have r_em smaller than those in the field, by 25 percent on average. These results are compared with studies of local galaxies, which find a very similar behaviour. From the relations of r_em and r_B versus B-band absolute magnitude (M_B) we infer that the difference between the intermediate-z cluster and field samples is mostly attributable to variation in r_em at a given M_B, while the r_B versus M_B relation is similar for the two samples.Comment: 5 pages, 5 figures, accepted for publication in MNRAS Letter
    corecore