34 research outputs found
Elevated CO<sub>2</sub> does not increase eucalypt forest productivity on a low-phosphorus soil
Rising atmospheric CO2 stimulates photosynthesis and productivity of forests, offsetting CO2 emissions. Elevated CO2 experiments in temperate planted forests yielded ~23% increases in productivity over the initial years. Whether similar CO2 stimulation occurs in mature evergreen broadleaved forests on low-phosphorus (P) soils is unknown, largely due to lack of experimental evidence. This knowledge gap creates major uncertainties in future climate projections as a large part of the tropics is P-limited. Here,we increased atmospheric CO2 concentration in a mature broadleaved evergreen eucalypt forest for three years, in the first large-scale experiment on a P-limited site. We show that tree growth and other aboveground productivity components did not significantly increase in response to elevated CO2 in three years, despite a sustained 19% increase in leaf photosynthesis. Moreover, tree growth in ambient CO2 was strongly P-limited and increased by ~35% with added phosphorus. The findings suggest that P availability may potentially constrain CO2-enhanced productivity in P-limited forests; hence, future atmospheric CO2 trajectories may be higher than predicted by some models. As a result, coupled climate-carbon models should incorporate both nitrogen and phosphorus limitations to vegetation productivity in estimating future carbon sinks
Committed Global Warming Risks Triggering Multiple Climate Tipping Points
Many scenarios for limiting global warming to 1.5°C assume planetary-scale carbon dioxide removal sufficient to exceed anthropogenic emissions, resulting in radiative forcing falling and temperatures stabilizing. However, such removal technology may prove unfeasible for technical, environmental, political, or economic reasons, resulting in continuing greenhouse gas emissions from hard-to-mitigate sectors. This may lead to constant concentration scenarios, where net anthropogenic emissions remain non-zero but small, and are roughly balanced by natural carbon sinks. Such a situation would keep atmospheric radiative forcing roughly constant. Fixed radiative forcing creates an equilibrium âcommittedâ warming, captured in the concept of âequilibrium climate sensitivity.â This scenario is rarely analyzed as a potential extension to transient climate scenarios. Here, we aim to understand the planetary response to such fixed concentration commitments, with an emphasis on assessing the resulting likelihood of exceeding temperature thresholds that trigger climate tipping points. We explore transients followed by respective equilibrium committed warming initiated under low to high emission scenarios. We find that the likelihood of crossing the 1.5°C threshold and the 2.0°C threshold is 83% and 55%, respectively, if today's radiative forcing is maintained until achieving equilibrium global warming. Under the scenario that best matches current national commitments (RCP4.5), we estimate that in the transient stage, two tipping points will be crossed. If radiative forcing is then held fixed after the year 2100, a further six tipping point thresholds are crossed. Achieving a trajectory similar to RCP2.6 requires reaching net-zero emissions rapidly, which would greatly reduce the likelihood of tipping events
Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate
The Mediterranean Basin is expected to face warmer and drier conditions in the future, following projected increases in temperature and declines in precipitation. The aim of this study is to explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra and Quercus frainetto will respond under such conditions. We combined an individual-based model (GREFOS), with a novel tree ring data set in order to constrain tree diameter growth and to account for inter- and intraspecific growth variability. We used wood density data to infer tree longevity, taking into account inter- and intraspecific variability. The model was applied at three 500-m-wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda on Northern Pindos in Greece. Simulations adequately represented species distribution and abundance across the elevation gradients under current climate. We subsequently used the model to estimate species and functional trait shifts under warmer and drier future conditions based on the IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of more drought-tolerant species were simulated. These shifts were also associated with changes in two key functional traits, in particular maximum radial growth rate and wood density. Drought-tolerant species presented an increase in their average maximal growth and decrease in their average wood density, in contrast to less drought-tolerant species
Maximising Synergy among Tropical Plant Systematists, Ecologists, and Evolutionary Biologists
Closer collaboration among ecologists, systematists, and evolutionary biologists working in tropical forests, centred on studies within long-term permanent plots, would be highly beneficial for their respective fields. With a key unifying theme of the importance of vouchered collection and precise identification of species, especially rare ones, we identify four priority areas where improving links between these communities could achieve significant progress in biodiversity and conservation science: (i) increasing the pace of species discovery; (ii) documenting species turnover across space and time; (iii) improving models of ecosystem change; and (iv) understanding the evolutionary assembly of communities and biomes
Critical transitions in the Amazon forest system
The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions
A model intercomparison project to study the role of plant functional diversity in the response of tropical forests to drought
Uncertainty in how the land carbon (C) sink will change over time contributes to uncertainty in Earth system model (ESM) projections of climate change. Much of the land sink is thought to reside in old-growth tropical forests, but recent analyses suggest a diminishing C sink in these forests due to rising temperatures and drought. Thus, there is an urgent need to better understand tropical forest responses to drought and to incorporate this understanding into ESMs. Previous work with vegetation demographic models (VDMs) â which represent the dynamics of individuals or cohorts, along with hydrology and biogeochemistry â suggest that functional diversity can enhance tropical forest resilience to climate change. However, there is little understanding of how different approaches to representing trait diversity and demography affect model outcomes. To explore the potential for trait diversity to moderate tropical forest responses to drought, we explored the behavior of nine VDMs, ranging from models with detailed site-level parameterizations to more generalized land models designed as ESM components. The behavior of each model was studied using soil and meteorological data collected at each of two tropical forest sites: Paracou Research Station, French Guiana, and Tapajos National Forest, Brazil. Low and high trait-diversity scenarios were simulated for each model using historical meteorology, as well as reduced rainfall scenarios.
Few models showed strong effects of trait diversity on drought resistance (short-term response of forest biomass to rainfall reduction), but most models showed positive effects of diversity on resilience (long-term recovery of forest biomass following the initial biomass loss due to rainfall reduction). Long-term recovery was always associated with shifts in community composition towards greater drought-tolerance. However, there were large differences among models in the degree and time-scale of recovery. These differences were unrelated to the goodness-of-fit of model predictions to observations of biomass, productivity, and soil moisture, suggesting that site-level calibration of model parameters is unlikely to strongly affect biodiversity-ecosystem functioning relationships in VDMs. Rather, the degree to which diversity moderated drought responses depended on which axes of trait variation were represented in the model, as well as model assumptions that affect the time-scale over which community composition shifts in response to environmental change. Our study suggests that incorporating trait diversity and demography into ESMs would likely lead to altered climate projections, but additional empirical and modeling work is needed to provide the ESM community with clear guidance on model development
Safe and just Earth system boundaries.
This is the final version. Available from Nature Research via the DOI in this record.âŻData availability
The data supporting Figs. 2 and 3 are available at https://doi.org/10.6084/m9.figshare.22047263.v2 and https://doi.org/10.6084/m9.figshare.20079200.v2, respectively. We rely on other published datasets for the climate boundary16, N boundary72 (model files are at https://doi.org/10.5281/zenodo.6395016), phosphorus73,74 (scenario breakdowns are at https://ora.ox.ac.uk/objects/uuid:d9676f6b-abba-48fd-8d94-cc8c0dc546a2, and a summary of agricultural sustainability indicators is at https://doi.org/10.5281/zenodo.5234594), current N surpluses129,130 (the repository at https://dataportaal.pbl.nl/downloads/IMAGE/GNM) with the critical N surplus limit72 subtracted, and estimated subglobal P concentration in runoff based on estimated P load to freshwater131 and local runoff data132,133. Current functional integrity is calculated from the European Space Agency WorldCover 10-metre-resolution land cover map (https://esa-worldcover.org/en). The safe boundary and current state for groundwater are derived from the Gravity Recovery And Climate Experiment (http://www2.csr.utexas.edu/grace/RL06_mascons.html) and the Global Land Data Assimilation System (https://disc.gsfc.nasa.gov/datacollection/GLDAS_NOAH025_3H_2.1.html). More information is available in âCode availabilityâ and Supplementary Methods. Source data for Fig. 2 are provided with this paper.Code availability:
The code used to produce Figs. 2 and 3 are available at https://doi.org/10.6084/m9.figshare.22047263.v2 and https://doi.org/10.6084/m9.figshare.20079200.v2, respectively. The code used to make the nutrient Earth system boundary layers in Fig. 3 is available at https://doi.org/10.5281/zenodo.7636716. The code used to make the surface water layer in Fig. 3 and derive the subglobal Earth system boundaries for surface water is available at https://doi.org/10.5281/zenodo.7674802. The code to estimate current functional integrity is available at https://figshare.com/articles/software/integrity_analysis/22232749/2. The code to derive the groundwater layer in Fig. 3 and derive the total annual groundwater recharge is available at https://doi.org/10.5281/zenodo.7710540.The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.Stockholm Universit
A just world on a safe planet: a Lancet Planetary HealthâEarth Commission report on Earth-system boundaries, translations, and transformations
The health of the planet and its people are at risk. The deterioration of the global commonsâie, the natural systems that support life on Earthâis exacerbating energy, food, and water insecurity, and increasing the risk of disease, disaster, displacement, and conflict. In this Commission, we quantify safe and just Earth-system boundaries (ESBs) and assess minimum access to natural resources required for human dignity and to enable escape from poverty. Collectively, these describe a safe and just corridor that is essential to ensuring sustainable and resilient human and planetary health and thriving in the Anthropocene. We then discuss the need for translation of ESBs across scales to inform science-based targets for action by key actors (and the challenges in doing so), and conclude by identifying the system transformations necessary to bring about a safe and just future.
Our concept of the safe and just corridor advances research on planetary boundaries and the justice and Earth-system aspects of the Sustainable Development Goals. We define safe as ensuring the biophysical stability of the Earth system, and our justice principles include minimising harm, meeting minimum access needs, and redistributing resources and responsibilities to enhance human health and wellbeing. The ceiling of the safe and just corridor is defined by the more stringent of the safe and just ESBs to minimise significant harm and ensure Earth-system stability. The base of the corridor is defined by the impacts of minimum global access to food, water, energy, and infrastructure for the global population, in the domains of the variables for which we defined the ESBs. Living within the corridor is necessary, because exceeding the ESBs and not meeting basic needs threatens human health and life on Earth. However, simply staying within the corridor does not guarantee justice because within the corridor resources can also be inequitably distributed, aggravating human health and causing environmental damage. Procedural and substantive justice are necessary to ensure that the space within the corridor is justly shared.
We define eight safe and just ESBs for five domainsâthe biosphere (functional integrity and natural ecosystem area), climate, nutrient cycles (phosphorus and nitrogen), freshwater (surface and groundwater), and aerosolsâto reduce the risk of degrading biophysical life-support systems and avoid tipping points. Seven of the ESBs have already been transgressed: functional integrity, natural ecosystem area, climate, phosphorus, nitrogen, surface water, and groundwater. The eighth ESB, air pollution, has been transgressed at the local level in many parts of the world. Although safe boundaries would ensure Earth-system stability and thus safeguard the overall biophysical conditions that have enabled humans to flourish, they do not necessarily safeguard everyone against harm or allow for minimum access to resources for all. We use the concept of Earth-system justiceâwhich seeks to ensure wellbeing and reduce harm within and across generations, nations, and communities, and between humans and other species, through procedural and distributive justiceâto assess safe boundaries. Earth-system justice recognises unequal responsibility for, and unequal exposure and vulnerability to, Earth-system changes, and also recognises unequal capacities to respond and unequal access to resources.
We also assess the extent to which safe ESBs could minimise irreversible, existential, and other major harms to human health and wellbeing through a review of who is affected at each boundary. Not all safe ESBs are just, in that they do not minimise all significant harm (eg, that associated with the climate change, aerosol, or nitrogen ESBs). Billions of people globally do not have sufficient access to energy, clean water, food, and other resources. For climate change, for example, tens of millions of people are harmed at lower levels of warming than that defined in the safe ESB, and thus to avoid significant harm would require a more stringent ESB. In other domains, the safe ESBs align with the just ESBs, although some need to be modified, or complemented with local standards, to prevent significant harm (eg, the aerosols ESB).
We examine the implications of achieving the social SDGs in 2018 through an impact modelling exercise, and quantify the minimum access to resources required for basic human dignity (level 1) as well as the minimum resources required to enable escape from poverty (level 2). We conclude that without social transformation and redistribution of natural resource use (eg, from top consumers of natural resources to those who currently do not have minimum access to these resources), meeting minimum-access levels for people living below the minimum level would increase pressures on the Earth system and the risks of further transgressions of the ESBs.
We also estimate resource-access needs for human populations in 2050 and the associated Earth-system impacts these could have. We project that the safe and just climate ESB will be overshot by 2050, even if everybody in the world lives with only the minimum required access to resources (no more, no less), unless there are transformations of, for example, the energy and food systems. Thus, a safe and just corridor will only be possible with radical societal transformations and technological changes.
Living within the safe and just corridor requires operationalisation of ESBs by key actors across all levels, which can be achieved via cross-scale translation (whereby resources and responsibilities for impact reductions are equitably shared among actors). We focus on cities and businesses because of the magnitude of their impacts on the Earth system, and their potential to take swift action and act as agents of change. We explore possible approaches for translating each ESB to cities and businesses via the sequential steps of transcription, allocation, and adjustment. We highlight how different elements of Earth-system justice can be reflected in the allocation and adjustment steps by choosing appropriate sharing approaches, informed by the governance context and broader enabling conditions.
Finally we discuss system transformations that could move humanity into a safe and just corridor and reduce risks of instability, injustice, and harm to human health. These transformations aim to minimise harm and ensure access to essential resources, while addressing the drivers of Earth-system change and vulnerability and the institutional and social barriers to systemic transformations, and include reducing and reallocating consumption, changing economic systems, technology, and governance
Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity
Tropical ecosystems adapted to high water availability may be highly impacted by climatic changes that increase soil and atmospheric moisture deficits. Many tropical regions are experiencing significant changes in climatic conditions, which may induce strong shifts in taxonomic, functional and phylogenetic diversity of forest communities. However, it remains unclear if and to what extent tropical forests are shifting in these facets of diversity along climatic gradients in response to climate change. Here, we show that changes in climate affected all three facets of diversity in West Africa in recent decades. Taxonomic and functional diversity increased in wetter forests but tended to decrease in forests with drier climate. Phylogenetic diversity showed a large decrease along a wet-dry climatic gradient. Notably, we find that all three facets of diversity tended to be higher in wetter forests. Drier forests showed functional, taxonomic and phylogenetic homogenization. Understanding how different facets of diversity respond to a changing environment across climatic gradients is essential for effective long-term conservation of tropical forest ecosystems
Reviewing the use of resilience concepts in forest sciences
Purpose of the review Resilience is a key concept to deal with an uncertain future in forestry. In recent years, it has received increasing attention from both research and practice. However, a common understanding of what resilience means in a forestry context, and how to operationalise it is lacking. Here, we conducted a systematic review of the recent forest science literature on resilience in the forestry context, synthesising how resilience is defined and assessed.
Recent findings Based on a detailed review of 255 studies, we analysed how the concepts of engineering resilience, ecological resilience, and social-ecological resilience are used in forest sciences. A clear majority of the studies applied the concept of engineering resilience, quantifying resilience as the recovery time after a disturbance. The two most used indicators for engineering resilience were basal area increment and vegetation cover, whereas ecological
resilience studies frequently focus on vegetation cover and tree density. In contrast, important social-ecological resilience indicators used in the literature are socio-economic diversity and stock of natural resources. In the context of global change, we expected an increase in studies adopting the more holistic social-ecological resilience concept, but this was not the observed trend. Summary Our analysis points to the nestedness of these three resilience concepts, suggesting that they are complementary rather than contradictory. It also means that the variety of resilience approaches does not need to be an obstacle for operationalisation of the concept. We provide guidance for choosing the most suitable resilience concept and indicators based on the management, disturbance and application context