1,060 research outputs found
Limiting shapes of confined lipid vesicles
We theoretically study the shapes of lipid vesicles confined to a spherical cavity, elaborating a framework based on the so-called limiting shapes constructed from geometrically simple structural elements such as double-membrane walls and edges. Partly inspired by numerical results, the proposed non-compartmentalized and compartmentalized limiting shapes are arranged in the bilayer-couple phase diagram which is then compared to its free-vesicle counterpart. We also compute the area-difference-elasticity phase diagram of the limiting shapes and we use it to interpret shape transitions experimentally observed in vesicles confined within another vesicle. The limiting-shape framework may be generalized to theoretically investigate the structure of certain cell organelles such as the mitochondrion
Bipolar-Hyper-Shell Galactic Center Statrburst Model: Further Evidence from ROSAT Data and New Radio and X-ray Simulations
Using the all-sky ROSAT soft X-ray and 408-MHz radio continuum data, we show
that the North Polar Spur and its western and southern counter-spurs draw a
giant dumbbell-shape necked at the galactic plane. We interpret these features
as due to a shock front originating from a starburst 15 million years ago with
a total energy of the order of ergs or type II
supernovae. We simulate all-sky distributions of radio continuum and soft X-ray
intensities based on the bipolar-hyper-shell galactic center starburst model.
The simulations can well reproduce the radio NPS and related spurs, as well as
radio spurs in the tangential directions of spiral arms. Simulated X-ray maps
in 0.25, 0.75 and 1.5 keV bands reproduce the ROSAT X-ray NPS, its western and
southern counter-spurs, and the absorption layer along the galactic plane. We
propose to use the ROSAT all-sky maps to probe the physics of gas in the
halo-intergalactic interface, and to directly date and measure the energy of a
recent Galactic Center starburst.Comment: To appear in ApJ, Latex MS in ApJ macro, 8 figures in jpg (original
quality ps figs available on request
Design and performance of the muon monitor for the T2K neutrino oscillation experiment
This article describes the design and performance of the muon monitor for the
T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon
monitor consists of two types of detector arrays: ionization chambers and
silicon PIN photodiodes. It measures the intensity and profile of muons
produced, along with neutrinos, in the decay of pions. The measurement is
sensitive to the intensity and direction of the neutrino beam. The linearity
and stability of the detectors were measured in beam tests to be within 2.4%
and 1.5%, respectively. Based on the test results, the precision of the beam
direction measured by the muon monitor is expected to be 0.25 mrad.Comment: 22 page
Development and operational experience of magnetic horn system for T2K experiment
A magnetic horn system to be operated at a pulsed current of 320 kA and to
survive high-power proton beam operation at 750 kW was developed for the T2K
experiment. The first set of T2K magnetic horns was operated for over 12
million pulses during the four years of operation from 2010 to 2013, under a
maximum beam power of 230 kW, and protons were exposed to
the production target. No significant damage was observed throughout this
period. This successful operation of the T2K magnetic horns led to the
discovery of the oscillation phenomenon in 2013 by
the T2K experiment. In this paper, details of the design, construction, and
operation experience of the T2K magnetic horns are described.Comment: 22 pages, 40 figures, also submitted to Nuclear Instrument and
Methods in Physics Research,
Multiplicity and transverse momentum fluctuations in inelastic proton-proton interactions at the CERN Super Proton Synchrotron
Measurements of multiplicity and transverse momentum fluctuations of charged
particles were performed in inelastic p+p interactions at 20, 31, 40, 80 and
158 GeV/c beam momentum. Results for the scaled variance of the multiplicity
distribution and for three strongly intensive measures of multiplicity and
transverse momentum fluctuations \$\Delta[P_{T},N]\$, \$\Sigma[P_{T},N]\$ and
\$\Phi_{p_T}\$ are presented. For the first time the results on fluctuations
are fully corrected for experimental biases. The results on multiplicity and
transverse momentum fluctuations significantly deviate from expectations for
the independent particle production. They also depend on charges of selected
hadrons. The string-resonance Monte Carlo models EPOS and UrQMD do not describe
the data. The scaled variance of multiplicity fluctuations is significantly
higher in inelastic p+p interactions than in central Pb+Pb collisions measured
by NA49 at the same energy per nucleon. This is in qualitative disagreement
with the predictions of the Wounded Nucleon Model. Within the statistical
framework the enhanced multiplicity fluctuations in inelastic p+p interactions
can be interpreted as due to event-by-event fluctuations of the fireball energy
and/or volume.Comment: 18 pages, 12 figure
Measurements of , , , and proton production in proton-carbon interactions at 31 GeV/ with the NA61/SHINE spectrometer at the CERN SPS
Measurements of hadron production in p+C interactions at 31 GeV/c are
performed using the NA61/ SHINE spectrometer at the CERN SPS. The analysis is
based on the full set of data collected in 2009 using a graphite target with a
thickness of 4% of a nuclear interaction length. Inelastic and production cross
sections as well as spectra of , , p, and are
measured with high precision. These measurements are essential for improved
calculations of the initial neutrino fluxes in the T2K long-baseline neutrino
oscillation experiment in Japan. A comparison of the NA61/SHINE measurements
with predictions of several hadroproduction models is presented.Comment: v1 corresponds to the preprint CERN-PH-EP-2015-278; v2 matches the
final published versio
Measurement of Production Properties of Positively Charged Kaons in Proton-Carbon Interactions at 31 GeV/c
Spectra of positively charged kaons in p+C interactions at 31 GeV/c were
measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is
based on the full set of data collected in 2007 with a graphite target with a
thickness of 4% of a nuclear interaction length. Interaction cross sections and
charged pion spectra were already measured using the same set of data. These
new measurements in combination with the published ones are required to improve
predictions of the neutrino flux for the T2K long baseline neutrino oscillation
experiment in Japan. In particular, the knowledge of kaon production is crucial
for precisely predicting the intrinsic electron neutrino component and the high
energy tail of the T2K beam. The results are presented as a function of
laboratory momentum in 2 intervals of the laboratory polar angle covering the
range from 20 up to 240 mrad. The kaon spectra are compared with predictions of
several hadron production models. Using the published pion results and the new
kaon data, the K+/\pi+ ratios are computed.Comment: 10 pages, 11 figure
- …