8 research outputs found

    Five key attributes can increase marine protected areas performance for small-scale fisheries management

    Get PDF
    Marine protected areas (MPAs) have largely proven to be effective tools for conserving marine ecosystem, while socio-economic benefits generated by MPAs to fisheries are still under debate. Many MPAs embed a no-take zone, aiming to preserve natural populations and ecosystems, within a buffer zone where potentially sustainable activities are allowed. Small-scale fisheries (SSF) within buffer zones can be highly beneficial by promoting local socio-economies. However, guidelines to successfully manage SSFs within MPAs, ensuring both conservation and fisheries goals, and reaching a win-win scenario, are largely unavailable. From the peer-reviewed literature, grey-literature and interviews, we assembled a unique database of ecological, social and economic attributes of SSF in 25 Mediterranean MPAs. Using random forest with Boruta algorithm we identified a set of attributes determining successful SSFs management within MPAs. We show that fish stocks are healthier, fishermen incomes are higher and the social acceptance of management practices is fostered if five attributes are present (i.e. high MPA enforcement, presence of a management plan, fishermen engagement in MPA management, fishermen representative in the MPA board, and promotion of sustainable fishing). These findings are pivotal to Mediterranean coastal communities so they can achieve conservation goals while allowing for profitable exploitation of fisheries resources

    The WOCE–era 3–D Pacific Ocean circulation and heat budget

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 82 (2009): 281-325, doi:10.1016/j.pocean.2009.08.002.To address questions concerning the intensity and spatial structure of the 3–dimensional circulation within the Pacific Ocean and the associated advective and diffusive property flux divergences, data from approximately 3000 high–quality hydrographic stations collected on 40 zonal and meridional cruises have been merged into a physically consistent model. The majority of the stations were occupied as part of the World Ocean Circulation Experiment (WOCE), which took place in the 1990s. These data are supplemented by a few pre–WOCE surveys of similar quality, and time–averaged direct–velocity and historical hydrographic measurements about the equator. An inverse box model formalism is employed to estimate the absolute along–isopycnal velocity field, the magnitude and spatial distribution of the associated diapycnal flow and the corresponding diapycnal advective and diffusive property flux divergences. The resulting large–scale WOCE Pacific circulation can be described as two shallow overturning cells at mid– to low latitudes, one in each hemisphere, and a single deep cell which brings abyssal waters from the Southern Ocean into the Pacific where they upwell across isopycnals and are returned south as deep waters. Upwelling is seen to occur throughout most of the basin with generally larger dianeutral transport and greater mixing occurring at depth. The derived pattern of ocean heat transport divergence is compared to published results based on air–sea flux estimates. The synthesis suggests a strongly east/west oriented pattern of air–sea heat flux with heat loss to the atmosphere throughout most of the western basins, and a gain of heat throughout the tropics extending poleward through the eastern basins. The calculated meridional heat transport agrees well with previous hydrographic estimates. Consistent with many of the climatologies at a variety of latitudes as well, our meridional heat transport estimates tend toward lower values in both hemispheres.This work was funded by National Science Foundation grants OCE–9710102, OCE– 9712209 and OCE–0079383, and also benefited from work on closely related projects funded by NSF grants OCE–0223421 and OCE–0623261, and NOAA grant NA17RJ1223 funded through CICOR. For G.C.J. NASA funding came under Order W–19,314
    corecore