575 research outputs found

    eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly

    Get PDF
    Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a deoxyhypusine synthase inhibitor (GC7) prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions

    A cluster randomised control trial to evaluate the effectiveness and cost-effectiveness of the Italian medicines use review (I-MUR) for asthma patients

    Get PDF
    Background The economic burden of asthma, which relates to the degree of control, is €5 billion annually in Italy. Pharmacists could help improve asthma control, reducing this burden. This study aimed to evaluate the effectiveness and cost-effectiveness of Medicines Use Reviews provided by community pharmacists in asthma. Methods This cluster randomised, multi-centre, controlled trial in adult patients with asthma was conducted in 15 of the 20 regions of Italy between September 2014 and July 2015. After stratification by region, community pharmacists were randomly allocated to group A (trained in and delivered the intervention at baseline) or B (training and delivery 3 months later), using computerised random number generation in blocks of 10. Each recruited up to five patients, with both groups followed for 9 months. The intervention consisted of a systematic, structured face-to-face consultation with a pharmacist, covering asthma symptoms, medicines used, attitude towards medicines and adherence, recording pharmacist-identified pharmaceutical care issues (PCIs). The primary outcome was asthma control, assessed using the Asthma-Control-Test (ACT) score (ACT ≥ 20 represents good control). Secondary outcomes were: number of active ingredients, adherence, cost-effectiveness compared with usual care. Although blinding was not possible for either pharmacists or patients, assessment of outcomes was conducted by researchers blind to group allocation. Results Numbers of pharmacists and patients enrolled were 283 (A = 136; B = 147) and 1263 (A = 600; B = 663), numbers completing were 201 (A = 97; B = 104) and 816 (A = 400; B = 416), respectively. Patients were similar in age and gender and 56.13% (458/816) had poor/partial asthma control. Pharmacists identified 1256 PCIs (mean 1.54/patient), mostly need for education, monitoring and potentially ineffective therapy. Median ACT score at baseline differed between groups (A = 19, B = 18; p < 0.01). Odds ratio for improved asthma control was 1.76 (95% CI 1.33–2.33) and number needed to treat 10 (95% CI 6–28). Number of active ingredients reduced by 7.9% post-intervention (p < 0.01). Adherence improved by 35.4% 3 months post-intervention and 40.0% at 6 months (p < 0.01). The probability of the intervention being more cost-effective than usual care was 100% at 9 months. Conclusions This community pharmacist-based intervention demonstrated both effectiveness and cost-effectiveness. It has since been implemented as the first community pharmacy cognitive service in Italy

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Topical delivery of tetrahydrocurcumin lipid nanoparticles effectively inhibits skin inflammation: in vitro and in vivo study

    Get PDF
    Tetrahydrocurcumin (THC) also referred to as "white curcumin", is a stable colourless hydrogenated product of curcumin with superior antioxidant and anti-inflammatory properties. Present study is an attempt to elevate the topical bioavailability of THC, post incorporation into a nano-carrier system with its final dosage as a hydrogel. Lipid nanoparticles of THC (THC-SLNs) prepared by microemulsification technique were ellipsoidal in shape (revealed in TEM) with a mean particle size of 96.6 nm and zeta potential of -22 mV. Total drug content and entrapment efficiency of THC-SLNs was 94.51% ± 2.15% and 69.56% ± 1.35%, respectively. DSC and X-Ray diffraction studies confirmed the formation of THC-SLNs. In vitro drug release studies showed the drug release from THC-SLNs gel to follow Higuchi's equation revealing a Fickian diffusion. Ex-vivo permeation studies indicated a 17 times (approximately) higher skin permeation of THC-SLNs gel as compared with the free THC gel. Skin irritation, occlusion and stability studies indicated the formulation to be non-irritating, and stable with a desired occlusivity. Pharmacodynamic evaluation in an excision wound mice model clearly revealed the enhanced anti-inflammatory activity of THC-SLNs gel and confirmed using biochemical and histopathological studies. It is noteworthy to report here that THC-SLNs gel showed significantly better (p≤0.001) activity than free THC in gel. As inflammation is innate to all the skin disorders, the developed product opens up new therapeutic avenues for several skin diseases. To best of our knowledge, this is the first paper elaborating the therapeutic usefulness of white curcumin loaded lipidic nanoparticles for skin inflammation

    Japanese Encephalitis—A Pathological and Clinical Perspective

    Get PDF
    Japanese encephalitis (JE) is the leading form of viral encephalitis in Asia. It is caused by the JE virus (JEV), which belongs to the family Flaviviridae. JEV is endemic to many parts of Asia, where periodic outbreaks take hundreds of lives. Despite the catastrophes it causes, JE has remained a tropical disease uncommon in the West. With rapid globalization and climatic shift, JEV has started to emerge in areas where the threat was previously unknown. Scientific evidence predicts that JEV will soon become a global pathogen and cause of worldwide pandemics. Although some research documents JEV pathogenesis and drug discovery, worldwide awareness of the need for extensive research to deal with JE is still lacking. This review focuses on the exigency of developing a worldwide effort to acknowledge the prime importance of performing an extensive study of this thus far neglected tropical viral disease. This review also outlines the pathogenesis, the scientific efforts channeled into develop a therapy, and the outlook for a possible future breakthrough addressing this killer disease

    Targeting KSHV/HHV-8 Latency with COX-2 Selective Inhibitor Nimesulide: A Potential Chemotherapeutic Modality for Primary Effusion Lymphoma

    Get PDF
    The significance of inflammation in KSHV biology and tumorigenesis prompted us to examine the role of COX-2 in primary effusion lymphoma (PEL), an aggressive AIDS-linked KSHV-associated non-Hodgkin's lymphoma (NHL) using nimesulide, a well-known COX-2 specific NSAID. We demonstrate that (1) nimesulide is efficacious in inducing proliferation arrest in PEL (KSHV+/EBV-; BCBL-1 and BC-3, KSHV+/EBV+; JSC-1), EBV-infected (KSHV-/EBV+; Raji) and non-infected (KSHV-/EBV-; Akata, Loukes, Ramos, BJAB) high malignancy human Burkitt's lymphoma (BL) as well as KSHV-/EBV+ lymphoblastoid (LCL) cell lines; (2) nimesulide is selectively toxic to KSHV infected endothelial cells (TIVE-LTC) compared to TIVE and primary endothelial cells (HMVEC-d); (3) nimesulide reduced KSHV latent gene expression, disrupted p53-LANA-1 protein complexes, and activated the p53/p21 tumor-suppressor pathway; (4) COX-2 inhibition down-regulated cell survival kinases (p-Akt and p-GSK-3β), an angiogenic factor (VEGF-C), PEL defining genes (syndecan-1, aquaporin-3, and vitamin-D3 receptor) and cell cycle proteins such as cyclins E/A and cdc25C; (5) nimesulide induced sustained cell death and G1 arrest in BCBL-1 cells; (6) nimesulide substantially reduced the colony forming capacity of BCBL-1 cells. Overall, our studies provide a comprehensive molecular framework linking COX-2 with PEL pathogenesis and identify the chemotherapeutic potential of nimesulide in treating PEL

    Hsa-miRNA-765 as a key mediator for inhibiting growth, migration and invasion in fulvestrant-treated prostate cancer

    Get PDF
    Fulvestrant (ICI-182,780) has recently been shown to effectively suppress prostate cancer cell growth in vitro and in vivo. But it is unclear whether microRNAs play a role in regulating oncogene expression in fulvestrant-treated prostate cancer. Here, this study reports hsa-miR-765 as the first fulvestrant-driven, ERβ-regulated miRNA exhibiting significant tumor suppressor activities like fulvestrant, against prostate cancer cell growth via blockage of cell-cycle progression at the G2/M transition, and cell migration and invasion possibly via reduction of filopodia/intense stress-fiber formation. Fulvestrant was shown to upregulate hsa-miR-765 expression through recruitment of ERβ to the 5′-regulatory-region of hsa-miR-765. HMGA1, an oncogenic protein in prostate cancer, was identified as a downstream target of hsa-miR-765 and fulvestrant in cell-based experiments and a clinical study. Both the antiestrogen and the hsa-miR-765 mimic suppressed HMGA1 protein expression. In a neo-adjuvant study, levels of hsa-miR-765 were increased and HMGA1 expression was almost completely lost in prostate cancer specimens from patients treated with a single dose (250 mg) of fulvestrant 28 days before prostatectomy. These findings reveal a novel fulvestrant signaling cascade involving ERβ-mediated transcriptional upregulation of hsa-miR-765 that suppresses HMGA1 protein expression as part of the mechanism underlying the tumor suppressor action of fulvestrant in prostate cancer. © 2014 Leung et al

    Alveolar proteins stabilize cortical microtubules in Toxoplasma gondii

    Get PDF
    Single-celled protists use elaborate cytoskeletal structures, including arrays of microtubules at the cell periphery, to maintain polarity and rigidity. The obligate intracellular parasite Toxoplasma gondii has unusually stable cortical microtubules beneath the alveoli, a network of flattened membrane vesicles that subtends the plasmalemma. However, anchoring of microtubules along alveolar membranes is not understood. Here, we show that GAPM1a, an integral membrane protein of the alveoli, plays a role in maintaining microtubule stability. Degradation of GAPM1a causes cortical microtubule disorganisation and subsequent depo-lymerisation. These changes in the cytoskeleton lead to parasites becoming shorter and rounder, which is accompanied by a decrease in cellular volume. Extended GAPM1a depletion leads to severe defects in division, reminiscent of the effect of disrupting other alveolar proteins. We suggest that GAPM proteins link the cortical microtubules to the alveoli and are required to maintain the shape and rigidity of apicomplexan zoites
    • …
    corecore