20 research outputs found

    A compendium of human genes regulating feeding behavior and body weight, its functional characterization and identification of GWAS genes involved in brain-specific PPI network

    Get PDF
    BACKGROUND: Obesity is heritable. It predisposes to many diseases. The objectives of this study were to create a compendium of genes relevant to feeding behavior (FB) and/or body weight (BW) regulation; to construct and to analyze networks formed by associations between genes/proteins; and to identify the most significant genes, biological processes/pathways, and tissues/organs involved in BW regulation. RESULTS: The compendium of genes controlling FB or BW includes 578 human genes. Candidate genes were identified from various sources, including previously published original research and review articles, GWAS meta-analyses, and OMIM (Online Mendelian Inheritance in Man). All genes were ranked according to knowledge about their biological role in body weight regulation and classified according to expression patterns or functional characteristics. Substantial and overrepresented numbers of genes from the compendium encoded cell surface receptors, signaling molecules (hormones, neuropeptides, cytokines), transcription factors, signal transduction proteins, cilium and BBSome components, and lipid binding proteins or were present in the brain-specific list of tissue-enriched genes identified with TSEA tool. We identified 27 pathways from KEGG, REACTOME and BIOCARTA whose genes were overrepresented in the compendium. Networks formed by physical interactions or homological relationships between proteins or interactions between proteins involved in biochemical/signaling pathways were reconstructed and analyzed. Subnetworks and clusters identified by the MCODE tool included genes/proteins associated with cilium morphogenesis, signal transduction proteins (particularly, G protein-coupled receptors, kinases or proteins involved in response to insulin stimulus) and transcription regulation (particularly nuclear receptors). We ranked GWAS genes according to the number of neighbors in three networks and revealed 22 GWAS genes involved in the brain-specific PPI network. On the base of the most reliable PPIs functioning in the brain tissue, new regulatory schemes interpreting relevance to BW regulation are proposed for three GWAS genes (ETV5, LRP1B, and NDUFS3). CONCLUSIONS: A compendium comprising 578 human genes controlling FB or BW was designed, and the most significant functional groups of genes, biological processes/pathways, and tissues/organs involved in BW regulation were revealed. We ranked genes from the GWAS meta-analysis set according to the number and quality of associations in the networks and then according to their involvement in the brain-specific PPI network and proposed new regulatory schemes involving three GWAS genes (ETV5, LRP1B, and NDUFS3) in BW regulation. The compendium is expected to be useful for pathology risk estimation and for design of new pharmacological approaches in the treatment of human obesity

    Search for New Candidate Genes Involved in the Comorbidity of Asthma and Hypertension Based on Automatic Analysis of Scientific Literature

    Get PDF
    Saik, Olga V, Demenkov PS, Ivanisenko, Timofey V, et al. Search for New Candidate Genes Involved in the Comorbidity of Asthma and Hypertension Based on Automatic Analysis of Scientific Literature. JOURNAL OF INTEGRATIVE BIOINFORMATICS. 2018;15(4): 20180054.Comorbid states of diseases significantly complicate diagnosis and treatment. Molecular mechanisms of comorbid states of asthma and hypertension are still poorly understood. Prioritization is a way for identifying genes involved in complex phenotypic traits. Existing methods of prioritization consider genetic, expression and evolutionary data, molecular-genetic networks and other. In the case of molecular-genetic networks, as a rule, protein-protein interactions and KEGG networks are used. ANDSystem allows reconstructing associative gene networks, which include more than 20 types of interactions, including protein-protein interactions, expression regulation, transport, catalysis, etc. In this work, a set of genes has been prioritized to find genes potentially involved in asthma and hypertension comorbidity. The prioritization was carried out using well-known methods (ToppGene and Endeavor) and a cross-talk centrality criterion, calculated by analysis of associative gene networks from ANDSystem. The identified genes, including ILIA, CD40LG, STAT3, IL15, FAS, APP, TLR2, C3, IL13 and CXCL10, may be involved in the molecular mechanisms of comorbid asthma/hypertension. An analysis of the dynamics of the frequency of mentioning the most priority genes in scientific publications revealed that the top 100 priority genes are significantly enriched with genes with increased positive dynamics, which may be a positive sign for further studies of these genes

    Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects

    Get PDF
    Zolotareva O, Saik OV, Königs C, et al. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Scientific Reports. 2019;9(1): 16302.Asthma and hypertension are complex diseases coinciding more frequently than expected by chance. Unraveling the mechanisms of comorbidity of asthma and hypertension is necessary for choosing the most appropriate treatment plan for patients with this comorbidity. Since both diseases have a strong genetic component in this article we aimed to find and study genes simultaneously associated with asthma and hypertension. We identified 330 shared genes and found that they form six modules on the interaction network. A strong overlap between genes associated with asthma and hypertension was found on the level of eQTL regulated genes and between targets of drugs relevant for asthma and hypertension. This suggests that the phenomenon of comorbidity of asthma and hypertension may be explained by altered genetic regulation or result from drug side effects. In this work we also demonstrate that not only drug indications but also contraindications provide an important source of molecular evidence helpful to uncover disease mechanisms. These findings give a clue to the possible mechanisms of comorbidity and highlight the direction for future research

    Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity?

    No full text
    People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity

    Hypoglycemia, Vascular Disease and Cognitive Dysfunction in Diabetes: Insights from Text Mining-Based Reconstruction and Bioinformatics Analysis of the Gene Networks

    No full text
    Hypoglycemia has been recognized as a risk factor for diabetic vascular complications and cognitive decline, but the molecular mechanisms of the effect of hypoglycemia on target organs are not fully understood. In this work, gene networks of hypoglycemia and cardiovascular disease, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, cognitive decline, and Alzheimer’s disease were reconstructed using ANDSystem, a text-mining-based tool. The gene network of hypoglycemia included 141 genes and 2467 interactions. Enrichment analysis of Gene Ontology (GO) biological processes showed that the regulation of insulin secretion, glucose homeostasis, apoptosis, nitric oxide biosynthesis, and cell signaling are significantly enriched for hypoglycemia. Among the network hubs, INS, IL6, LEP, TNF, IL1B, EGFR, and FOS had the highest betweenness centrality, while GPR142, MBOAT4, SLC5A4, IGFBP6, PPY, G6PC1, SLC2A2, GYS2, GCGR, and AQP7 demonstrated the highest cross-talk specificity. Hypoglycemia-related genes were overrepresented in the gene networks of diabetic complications and comorbidity; moreover, 14 genes were mutual for all studied disorders. Eleven GO biological processes (glucose homeostasis, nitric oxide biosynthesis, smooth muscle cell proliferation, ERK1 and ERK2 cascade, etc.) were overrepresented in all reconstructed networks. The obtained results expand our understanding of the molecular mechanisms underlying the deteriorating effects of hypoglycemia in diabetes-associated vascular disease and cognitive dysfunction

    Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity?

    No full text
    People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity

    Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications

    No full text
    Glucose variability (GV) has been recognized recently as a promoter of complications and therapeutic targets in diabetes. The aim of this study was to reconstruct and analyze gene networks related to GV in diabetes and its complications. For network analysis, we used the ANDSystem that provides automatic network reconstruction and analysis based on text mining. The network of GV consisted of 37 genes/proteins associated with both hyperglycemia and hypoglycemia. Cardiovascular system, pancreas, adipose and muscle tissues, gastrointestinal tract, and kidney were recognized as the loci with the highest expression of GV-related genes. According to Gene Ontology enrichment analysis, these genes are associated with insulin secretion, glucose metabolism, glycogen biosynthesis, gluconeogenesis, MAPK and JAK-STAT cascades, protein kinase B signaling, cell proliferation, nitric oxide biosynthesis, etc. GV-related genes were found to occupy central positions in the networks of diabetes complications (cardiovascular disease, diabetic nephropathy, retinopathy, and neuropathy) and were associated with response to hypoxia. Gene prioritization analysis identified new gene candidates (THBS1, FN1, HSP90AA1, EGFR, MAPK1, STAT3, TP53, EGF, GSK3B, and PTEN) potentially involved in GV. The results expand the understanding of the molecular mechanisms of the GV phenomenon in diabetes and provide molecular markers and therapeutic targets for future research

    A new version of the ANDSystem tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression

    No full text
    Abstract Background Consideration of tissue-specific gene expression in reconstruction and analysis of molecular genetic networks is necessary for a proper description of the processes occurring in a specified tissue. Currently, there are a number of computer systems that allow the user to reconstruct molecular-genetic networks using the data automatically extracted from the texts of scientific publications. Examples of such systems are STRING, Pathway Commons, MetaCore and Ingenuity. The MetaCore and Ingenuity systems permit taking into account tissue-specific gene expression during the reconstruction of gene networks. Previously, we developed the ANDSystem tool, which also provides an automated extraction of knowledge from scientific texts and allows the reconstruction of gene networks. The main difference between our system and other tools is in the different types of interactions between objects, which makes the ANDSystem complementary to existing well-known systems. However, previous versions of the ANDSystem did not contain any information on tissue-specific expression. Results A new version of the ANDSystem has been developed. It offers the reconstruction of associative gene networks while taking into account the tissue-specific gene expression. The ANDSystem knowledge base features information on tissue-specific expression for 272 tissues. The system allows the reconstruction of combined gene networks, as well as performing the filtering of genes from such networks using the information on their tissue-specific expression. As an example of the application of such filtering, the gene network of the extrinsic apoptotic signaling pathway was analyzed. It was shown that considering different tissues can lead to changes in gene network structure, including changes in such indicators as betweenness centrality of vertices, clustering coefficient, network centralization, network density, etc. Conclusions The consideration of tissue specificity can play an important role in the analysis of gene networks, in particular solving the problem of finding the most significant central genes. Thus, the new version of ANDSystem can be employed for a wide range of tasks related to biomedical studies of individual tissues. It is available at http://www-bionet.sscc.ru/and/cell/

    Analysis of signaling networks distributed over intracellular compartments based on protein-protein interactions

    No full text
    Popik OV, Saik OV, Petrovskiy ED, et al. Analysis of signaling networks distributed over intracellular compartments based on protein-protein interactions. BMC Genomics. 2014;15(Suppl 12): S7.http://www.biomedcentral.com/1471-2164/15/S12/S
    corecore