9 research outputs found

    Artery tertiary lymphoid organs control multi-layered territorialized atherosclerosis B cell responses in aged ApoE-/- mice

    Get PDF
    Objective: Explore aorta B cell immunity in aged ApoE-/- mice. Approach and Results: Transcript maps, FACS, immunofluorescence analyses, cell transfers, and Ig-ELISPOT assays showed multi-layered atherosclerosis B cell responses in artery tertiary lymphoid organs (ATLOs). Aging-associated aorta B cell-related transcriptomes were identified and transcript atlases revealed highly territorialized B cell responses in ATLOs versus atherosclerotic lesions: ATLOs showed upregulation of bona fide B cell genes including Cd19, Ms4a1 (Cd20), Cd79a/b, and Ighm though intima plaques preferentially expressed molecules involved in non-B effector responses towards B cell-derived mediators, i.e. Fcgr3 (Cd16), Fcer1g (Cd23), and the C1q family. ATLOs promoted B cell recruitment. ATLO B-2 B cells included naïve, transitional, follicular, germinal center, switched IgG1+, IgA+, and IgE+ memory cells, plasmablasts, and long-lived plasma cells (PCs). ATLOs recruited large numbers of B-1 cells whose subtypes were skewed towards IL-10+ B-1b cells versus IL-10- B-1a cells. ATLO B-1 cells and PCs constitutively produced IgM and IgG and a fraction of PCs expressed IL-10. Moreover, ApoE-/- mice showed increased germinal center B cells in renal lymph nodes, IgM-producing PCs in the bone marrow, and higher IgM and anti-MDA-LDL IgG serum titers. Conclusions: ATLOs orchestrate dichotomic, territorialized, and multi-layered B cell responses in the diseased aorta; germinal center reactions indicate generation of autoimmune B cells within the diseased arterial wall during aging

    ApoE attenuates unresolvable inflammation by complex formation with activated C1q

    Get PDF
    Apolipoprotein-E (ApoE) has been implicated in Alzheimer's disease, atherosclerosis, and other unresolvable inflammatory conditions but a common mechanism of action remains elusive. We found in ApoE-deficient mice that oxidized lipids activated the classical complement cascade (CCC), resulting in leukocyte infiltration of the choroid plexus (ChP). All human ApoE iso-forms attenuated CCC activity via high-affinity binding to the activated CCC-initiating C1q protein (K-D similar to 140-580 pM) in vitro, and C1q-ApoE complexes emerged as markers for ongoing complement activity of diseased ChPs, A beta plaques, and atherosclerosis in vivo. C1q-ApoE complexes in human ChPs, A beta plaques, and arteries correlated with cognitive decline and atherosclerosis, respectively. Treatment with small interfering RNA (siRNA) against C5, which is formed by all complement pathways, attenuated murine ChP inflammation, A beta-associated microglia accumulation, and atherosclerosis. Thus, ApoE is a direct checkpoint inhibitor of unresolvable inflammation, and reducing C5 attenuates disease burden

    Complement C1r serine protease contributes to kidney fibrosis

    No full text
    International audienceWe have previously reported that complement activation precedes the development of kidney fibrosis; however, little is known about the cellular mechanisms involved in this transition. We hypothesized that increased expression of C1 complex protease C1r, the initiator of complement activation, contributes to tubulointerstitial fibrosis and tested this idea in mice with global deletion of C1r. Although expression of C1r in untreated wild-type (WT) mice was higher in the liver compared with kidney tissue, administration of folic acid (FA) led to upregulation of C1r mRNA and protein levels only in kidney tissue. Immunohistochemistry and in situ hybridization experiments localized increased expression of C1r and C1s proteases to renal tubular epithelial cells. C1r-null mice had reduced acute tubular injury and inflammation measured 2 days after FA administration compared with WT mice. C1r deletion reduced expression of C1s, C3 fragment formation, and organ fibrosis measured 14 days after FA administration. Differential gene expression performed in kidney tissue demonstrated that C1r-null mice had reduced expression of genes associated with the acute phase response, complement, proliferation of connective tissue cells (e.g., platelet-derived growth factor receptor-β), and reduced expression of genes associated with inflammation compared with FA-treated WT mice. In vitro experiments in renal epithelial cells demonstrated that C1s expression is dependent on increased C1r expression and that interferon-γ induces the expression of these two proteases. We conclude that increased expression of C1 complex proteases is associated with increased tissue inflammation and complement C3 formation and represents an important pathogenic mechanism leading to FA-mediated tubulointerstitial fibrosis

    Mechanistic analyses in kidney transplant recipients prospectively randomized to two steroid free regimen-Low dose Tacrolimus with Everolimus versus standard dose Tacrolimus with Mycophenolate Mofetil.

    No full text
    Calcineurin inhibitors (CNI), the cornerstone of immunosuppression after transplantation are implicated in nephrotoxicity and allograft dysfunction. We hypothesized that combined low doses of CNI and Everolimus (EVR) may result in better graft outcomes and greater tolerogenic milieu. Forty adult renal transplant recipients were prospectively randomized to (steroid free) low dose Tacrolimus (TAC) and EVR or standard dose TAC and Mycophenolate (MMF) after Alemtuzumab induction. Baseline characteristics were statistically similar. EVR levels were maintained at 3-8 ng/ml. TAC levels were 4.5±1.9 and 6.4±1.5 ng/ml in the TAC+EVR and TAC+MMF group respectively. Follow up was 14±4 and 17±5 months respectively and included protocol kidney biopsies at 3 and 12 months post-transplantation. Rejection-rate was lower in the TAC+EVR group. However patient and overall graft survival, eGFR and incidence of adverse events were similar. TAC+EVR induced expansion of CD4+CD25hiFoxp3+ regulatory T cells as early as 3 months and expansion of IFN-γ+CD4+CD25hiFoxp3+ regulatory T cells at 12 months post-transplant. Gene expression profile showed a trend toward decreased inflammation, angiogenesis and connective tissue growth in the TAC+EVR Group. Thus, greater tolerogenic mechanisms were found to be operating in patients with low dose TAC+EVR and this might be responsible for the lower rejection-rate than in patients on standard dose TAC+MMF. However, further studies with longer follow up and evaluating impact on T regulatory cells are warranted

    Clinical and Genetic Risk Factors of Recurrent Nonalcoholic Fatty Liver Disease After Liver Transplantation

    No full text
    INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) has been increasingly reported among recipients of liver transplantation (LT). We aimed to identify clinical and genetic risk factors responsible for the development of early recurrent NAFLD in nonalcoholic steatohepatitis transplant recipients. METHODS: Forty-six total single nucleotide polymorphisms with known association with NAFLD were tested among both recipient and donor liver samples in 66 LT recipients with nonalcoholic steatohepatitis to characterize influences on NAFLD recurrence at ∼1 year post-LT (median interval from LT to biopsy: 377 days). RESULTS: Recurrent NAFLD was identified in 43 (65.2%) patients, 20 (30.3%) with mild recurrence, and 23 (34.8%) with moderate to severe NAFLD. On adjusted analysis, change in the body mass index (BMI) (ΔBMI) was significantly associated with NAFLD recurrence, whereas post-LT diabetes mellitus was associated with increased severity of NAFLD recurrence. ADIPOR1 rs10920533 in the recipient was associated with increased risk of moderate to severe NAFLD recurrence, whereas the minor allele of SOD2 rs4880 in the recipient was associated with reduced risk. Similar reduced risk was noted in the presence of donor SOD2 rs4880 and HSD17B13 rs6834314 polymorphism. DISCUSSION: Increased BMI post-LT is strongly associated with NAFLD recurrence, whereas post-LT diabetes mellitus was associated with increased severity of NAFLD recurrence. Both donor and recipient SOD2 rs4880 and donor HSD17B13 rs6834314 single nucleotide polymorphisms may be associated with reduced risk of early NAFLD recurrence, whereas presence of the minor allele form of ADIPOR1 rs10920533 in the recipient is associated with increased severity NAFLD recurrence

    ApoE attenuates unresolvable inflammation by complex formation with activated C1q

    No full text
    Apolipoprotein-E (ApoE) has been implicated in Alzheimer's disease, atherosclerosis, and other unresolvable inflammatory conditions but a common mechanism of action remains elusive. We found in ApoE-deficient mice that oxidized lipids activated the classical complement cascade (CCC), resulting in leukocyte infiltration of the choroid plexus (ChP). All human ApoE iso-forms attenuated CCC activity via high-affinity binding to the activated CCC-initiating C1q protein (K-D similar to 140-580 pM) in vitro, and C1q-ApoE complexes emerged as markers for ongoing complement activity of diseased ChPs, A beta plaques, and atherosclerosis in vivo. C1q-ApoE complexes in human ChPs, A beta plaques, and arteries correlated with cognitive decline and atherosclerosis, respectively. Treatment with small interfering RNA (siRNA) against C5, which is formed by all complement pathways, attenuated murine ChP inflammation, A beta-associated microglia accumulation, and atherosclerosis. Thus, ApoE is a direct checkpoint inhibitor of unresolvable inflammation, and reducing C5 attenuates disease burden
    corecore