80 research outputs found

    Topology and Dark Energy: Testing Gravity in Voids

    Full text link
    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field - here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state (EOS) of DE which is density-and-scale-dependent. Tension between Type Ia supernovae and Planck could be reduced. In voids the scalar field dramatically alters the EOS of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.Comment: Revised version, added detail, conclusions unchanged, matches PRL published version in content. 4 pages, 2 figure

    Reconstructing thawing quintessence with multiple datasets

    Full text link
    In this work we model the quintessence potential in a Taylor series expansion, up to second order, around the present-day value of the scalar field. The field is evolved in a thawing regime assuming zero initial velocity. We use the latest data from the Planck satellite, baryonic acoustic oscillations observations from the Sloan Digital Sky Survey, and Supernovae luminosity distance information from Union2.1 to constrain our models parameters, and also include perturbation growth data from the WiggleZ, BOSS and the 6dF surveys. The supernova data provide the strongest individual constraint on the potential parameters. We show that the growth data performance is competitive with the other datasets in constraining the dark energy parameters we introduce. We also conclude that the combined constraints we obtain for our model parameters, when compared to previous works of nearly a decade ago, have shown only modest improvement, even with new growth of structure data added to previously-existent types of data.Comment: 9 pages, 4 figures and 1 table. Version 2 with minor changes to match Physical Review D accepted versio

    Conditions for detecting lensed Population III galaxies in blind surveys with the James Webb Space Telescope, the Roman Space Telescope and Euclid

    Full text link
    Dark matter halos that reach the HI-cooling mass without prior star formation or external metal pollution represent potential sites for the formation of small Population III galaxies at high redshifts. Such objects are expected to attain total stellar masses of at most 10610^6 solar masses and will therefore typically be extremely faint. Gravitational lensing may in rare cases boost their fluxes to detectable levels, but to find even a small number of such objects requires very large sky areas to be surveyed. Because of this, a small, wide-field telescope can in principle offer better detection prospects than a large telescope with a smaller field of view. Here, we derive the Pop III galaxy properties - in terms of comoving number density, stellar initial mass function and total stellar mass - required to allow gravitational lensing to lift such objects at redshift z = 5-16 above the detection thresholds of blind surveys carried out with the James Webb space telescope (JWST), the Roman space telescope (RST) or Euclid. We find that the prospects for photometric detections of Pop III galaxies are promising, and that they are better for RST than for JWST and Euclid. However, the Pop III galaxies favoured by current simulations have number densities too low to allow spectroscopic detections based on the strength of the HeII1640 emission line in any of the considered surveys unless very high star formation efficiencies (10 per cent) are envoked.Comment: 13 pages, 4 figure

    Direct reconstruction of the quintessence potential

    Get PDF
    We describe an algorithm which directly determines the quintessence potential from observational data, without using an equation of state parametrisation. The strategy is to numerically determine observational quantities as a function of the expansion coefficients of the quintessence potential, which are then constrained using a likelihood approach. We further impose a model selection criterion, the Bayesian Information Criterion, to determine the appropriate level of the potential expansion. In addition to the potential parameters, the present-day quintessence field velocity is kept as a free parameter. Our investigation contains unusual model types, including a scalar field moving on a flat potential, or in an uphill direction, and is general enough to permit oscillating quintessence field models. We apply our method to the `gold' Type Ia supernovae sample of Riess et al. (2004), confirming the pure cosmological constant model as the best description of current supernovae luminosity-redshift data. Our method is optimal for extracting quintessence parameters from future data.Comment: 9 pages RevTeX4 with lots of incorporated figure

    The XMM Cluster Survey: The Stellar Mass Assembly of Fossil Galaxies

    Get PDF
    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightest galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5R200, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters. The online FS catalog can be found at http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.html.Comment: 30 pages, 50 figures. ApJ published version, online FS catalog added: http://www.astro.ljmu.ac.uk/~xcs/Harrison2012/XCSFSCat.htm

    The XMM Cluster Survey: The interplay between the brightest cluster galaxy and the intra-cluster medium via AGN feedback

    Get PDF
    Using a sample of 123 X-ray clusters and groups drawn from the XMM-Cluster Survey first data release, we investigate the interplay between the brightest cluster galaxy (BCG), its black hole, and the intra-cluster/group medium (ICM). It appears that for groups and clusters with a BCG likely to host significant AGN feedback, gas cooling dominates in those with Tx > 2 keV while AGN feedback dominates below. This may be understood through the sub-unity exponent found in the scaling relation we derive between the BCG mass and cluster mass over the halo mass range 10^13 < M500 < 10^15Msol and the lack of correlation between radio luminosity and cluster mass, such that BCG AGN in groups can have relatively more energetic influence on the ICM. The Lx - Tx relation for systems with the most massive BCGs, or those with BCGs co-located with the peak of the ICM emission, is steeper than that for those with the least massive and most offset, which instead follows self-similarity. This is evidence that a combination of central gas cooling and powerful, well fuelled AGN causes the departure of the ICM from pure gravitational heating, with the steepened relation crossing self-similarity at Tx = 2 keV. Importantly, regardless of their black hole mass, BCGs are more likely to host radio-loud AGN if they are in a massive cluster (Tx > 2 keV) and again co-located with an effective fuel supply of dense, cooling gas. This demonstrates that the most massive black holes appear to know more about their host cluster than they do about their host galaxy. The results lead us to propose a physically motivated, empirical definition of 'cluster' and 'group', delineated at 2 keV.Comment: Accepted for publication in MNRAS - replaced to match corrected proo
    corecore