19 research outputs found

    Decomposition of Geometric Graphs into Star Forests

    Full text link
    We solve a problem of Dujmovi\'c and Wood (2007) by showing that a complete convex geometric graph on nn vertices cannot be decomposed into fewer than n1n-1 star-forests, each consisting of noncrossing edges. This bound is clearly tight. We also discuss similar questions for abstract graphs

    Order-2 Delaunay Triangulations Optimize Angles

    Get PDF
    The local angle property of the (order-1) Delaunay triangulations of a generic set in R2 asserts that the sum of two angles opposite a common edge is less than π. This paper extends this property to higher order and uses it to generalize two classic properties from order-1 to order-2: (1) among the complete level-2 hypertriangulations of a generic point set in R2, the order-2 Delaunay triangulation lexicographically maximizes the sorted angle vector; (2) among the maximal level-2 hypertriangulations of a generic point set in R2, the order-2 Delaunay triangulation is the only one that has the local angle property. We also use our method of establishing (2) to give a new short proof of the angle vector optimality for the (order-1) Delaunay triangulation. For order-1, both properties have been instrumental in numerous applications of Delaunay triangulations, and we expect that their generalization will make order-2 Delaunay triangulations more attractive to applications as well

    On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane

    Get PDF
    For a locally finite set in R2, the order-k Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in k. As an example, a stationary Poisson point process in R2 is locally finite, coarsely dense, and generic with probability one. For such a set, the distribution of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-1 Delaunay mosaics given by Miles in 1970

    LIPIcs

    Get PDF
    Generalizing Lee’s inductive argument for counting the cells of higher order Voronoi tessellations in ℝ² to ℝ³, we get precise relations in terms of Morse theoretic quantities for piecewise constant functions on planar arrangements. Specifically, we prove that for a generic set of n ≥ 5 points in ℝ³, the number of regions in the order-k Voronoi tessellation is N_{k-1} - binom(k,2)n + n, for 1 ≤ k ≤ n-1, in which N_{k-1} is the sum of Euler characteristics of these function’s first k-1 sublevel sets. We get similar expressions for the vertices, edges, and polygons of the order-k Voronoi tessellation

    On Angles in Higher Order Brillouin Tessellations and Related Tilings in the Plane

    Get PDF
    For a locally finite set in R2\mathbb{R}^2, the order-kk Brillouin tessellations form an infinite sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and generic, then the corresponding infinite sequences of minimum and maximum angles are both monotonic in kk. As an example, a stationary Poisson point process in R2\mathbb{R}^2 is locally finite, coarsely dense, and generic with probability one. For such a set, the distribution of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin tessellations are independent of the order and can be derived from the formula for angles in order-11 Delaunay mosaics given by Miles in 1970

    On a Bounded Budget Network Creation Game

    Full text link
    We consider a network creation game in which each player (vertex) has a fixed budget to establish links to other players. In our model, each link has unit price and each agent tries to minimize its cost, which is either its local diameter or its total distance to other players in the (undirected) underlying graph of the created network. Two versions of the game are studied: in the MAX version, the cost incurred to a vertex is the maximum distance between the vertex and other vertices, and in the SUM version, the cost incurred to a vertex is the sum of distances between the vertex and other vertices. We prove that in both versions pure Nash equilibria exist, but the problem of finding the best response of a vertex is NP-hard. We take the social cost of the created network to be its diameter, and next we study the maximum possible diameter of an equilibrium graph with n vertices in various cases. When the sum of players' budgets is n-1, the equilibrium graphs are always trees, and we prove that their maximum diameter is Theta(n) and Theta(log n) in MAX and SUM versions, respectively. When each vertex has unit budget (i.e. can establish link to just one vertex), the diameter of any equilibrium graph in either version is Theta(1). We give examples of equilibrium graphs in the MAX version, such that all vertices have positive budgets and yet the diameter is Omega(sqrt(log n)). This interesting (and perhaps counter-intuitive) result shows that increasing the budgets may increase the diameter of equilibrium graphs and hence deteriorate the network structure. Then we prove that every equilibrium graph in the SUM version has diameter 2^O(sqrt(log n)). Finally, we show that if the budget of each player is at least k, then every equilibrium graph in the SUM version is k-connected or has diameter smaller than 4.Comment: 28 pages, 3 figures, preliminary version appeared in SPAA'1

    Preclustering Algorithms for Imprecise Points

    Get PDF
    corecore