264 research outputs found

    Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity

    Get PDF
    The molecular chaperone Heat shock protein 90 (Hsp90) is essential for the folding, stability, and activity of several drivers of oncogenesis. Hsp90 inhibitors are currently under clinical evaluation for cancer treatment, however their efficacy is limited by lack of biomarkers to optimize patient selection. We have recently identified the tumor suppressor tuberous sclerosis complex 1 (Tsc1) as a new co-chaperone of Hsp90 that affects Hsp90 binding to its inhibitors. Highly variable mutations of TSC1 have been previously identified in bladder cancer and correlate with sensitivity to the Hsp90 inhibitors. Here we showed loss of TSC1 leads to hypoacetylation of Hsp90-K407/K419 and subsequent decreased binding to the Hsp90 inhibitor ganetespib. Pharmacologic inhibition of histone deacetylases (HDACs) restores acetylation of Hsp90 and sensitizes Tsc1-mutant bladder cancer cells to ganetespib, resulting in apoptosis. Our findings suggest that TSC1 status may predict response to Hsp90 inhibitors in patients with bladder cancer, and co-targeting HDACs can sensitize tumors with Tsc1 mutations to Hsp90 inhibitors

    When who and how matter: explaining the success of referendums in Europe

    Get PDF
    This article aims to identify the institutional factors that make a referendum successful. This comparative analysis seeks to explain the success of top-down referendums organized in Europe between 2001 and 2013. It argues and tests for the main effect of three institutional factors (popularity of the initiator, size of parliamentary majority, and political cues during referendum campaigns) and controls for the type of referendum and voter turnout. The analysis uses data collected from referendums and electoral databases, public opinion surveys, and newspaper articles. Results show that referendums proposed by a large parliamentary majority or with clear messages from political parties during campaign are likely to be successful

    NSAIDs May Protect Against Age-Related Brain Atrophy

    Get PDF
    The use of non-steroidal anti-inflammatory drugs (NSAIDs) in humans is associated with brain differences including decreased number of activated microglia. In animals, NSAIDs are associated with reduced microglia, decreased amyloid burden, and neuronal preservation. Several studies suggest NSAIDs protect brain regions affected in the earliest stages of AD, including hippocampal and parahippocampal regions. In this cross-sectional study, we examined the protective effect of NSAID use on gray matter volume in a group of middle-aged and older NSAID users (n = 25) compared to non-user controls (n = 50). All participants underwent neuropsychological testing and T1-weighted magnetic resonance imaging. Non-user controls showed smaller volume in portions of the left hippocampus compared to NSAID users. Age-related loss of volume differed between groups, with controls showing greater medial temporal lobe volume loss with age compared to NSAID users. These results should be considered preliminary, but support previous reports that NSAIDs may modulate age-related loss of brain volume

    Center Director's Discretionary Fund 2005 Annual Report

    Get PDF
    The FY 2005 CDDF projects were selected from the following spaceport and range technology and science areas: fluid system technologies; spaceport structures and materials; command, control, and monitoring technologies; and biological sciences (including support for environmental stewardship). The FY 2005 CDDF research projects involved development of the following: a) Capacitance-based moisture sensors to optimize plant growth in reduced gravity; b) Commodity-free calibration methods; c) Application of atmospheric plasma glow discharge to alter the surface properties of polymers for improved electrostatic dissipation characteristics; d) A wipe-on, wipe-off chemical process to remove lead oxides found in paint; e) A robust metabolite profiling platform for better understanding the "law" of biological regulation; f) An explanation of the excavation processes that occur when a jet of gas impinges on a bed of sand; g) "Smart coatings" to detect and control corrosion at an early stage to prevent further corrosion h) A model that can produce a reliable diagnosis of the quality of a software product; i) The formulation of advanced materials to meet system safety needs to minimize electrostatic charges, flammability, and radiation exposure; j) A lab-based instrument that uses the electro-optic Pockels effect to make static electric fields visible; k) A passive volatile organic compound (VOC) cartridge to filter, identify, and quantify VOCs flowing into or emanating from plant flight experiments

    Tumor suppressor Tsc1 is a new Hsp90 co-chaperone that facilitates folding of kinase and non-kinase clients

    Get PDF
    The tumor suppressors Tsc1 and Tsc2 form the tuberous sclerosis complex (TSC), a regulator of mTOR activity. Tsc1 stabilizes Tsc2; however, the precise mechanism involved remains elusive. The molecular chaperone heat-shock protein 90 (Hsp90) is an essen- tial component of the cellular homeostatic machinery in eukary- otes. Here, we show that Tsc1 is a new co-chaperone for Hsp90 that inhibits its ATPase activity. The C-terminal domain of Tsc1 (998–1,164 aa) forms a homodimer and binds to both protomers of the Hsp90 middle domain. This ensures inhibition of both subunits of the Hsp90 dimer and prevents the activating co- chaperone Aha1 from binding the middle domain of Hsp90. Conversely, phosphorylation of Aha1-Y223 increases its affinity for Hsp90 and displaces Tsc1, thereby providing a mechanism for equilibrium between binding of these two co-chaperones to Hsp90. Our findings establish an active role for Tsc1 as a facilita- tor of Hsp90-mediated folding of kinase and non-kinase clients— including Tsc2—thereby preventing their ubiquitination and proteasomal degradation

    The Macronuclear Genome of \u3cem\u3eStentor coeruleus\u3c/em\u3e Reveals Tiny Introns in a Giant Cell

    Get PDF
    The giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long. Early developmental biologists, including T.H. Morgan [3], were attracted to the system because of its regenerative abilities—if large portions of a cell are surgically removed, the remnant reorganizes into a normal-looking but smaller cell with correct proportionality [2, 3]. These biologists were also drawn to Stentor because it exhibits a rich repertoire of behaviors, including light avoidance, mechanosensitive contraction, food selection, and even the ability to habituate to touch, a simple form of learning usually seen in higher organisms [4]. While early microsurgical approaches demonstrated a startling array of regenerative and morphogenetic processes in this single-celled organism, Stentor was never developed as a molecular model system. We report the sequencing of the Stentor coeruleus macronuclear genome and reveal key features of the genome. First, we find that Stentor uses the standard genetic code, suggesting that ciliate-specific genetic codes arose after Stentor branched from other ciliates. We also discover that ploidy correlates with Stentor’s cell size. Finally, in the Stentor genome, we discover the smallest spliceosomal introns reported for any species. The sequenced genome opens the door to molecular analysis of single-cell regeneration in Stentor

    CSF T-Tau/Aβ42 Predicts White Matter Microstructure in Healthy Adults at Risk for Alzheimer’s Disease

    Get PDF
    Cerebrospinal fluid (CSF) biomarkers T-Tau and Aβ42 are linked with Alzheimer’s disease (AD), yet little is known about the relationship between CSF biomarkers and structural brain alteration in healthy adults. In this study we examined the extent to which AD biomarkers measured in CSF predict brain microstructure indexed by diffusion tensor imaging (DTI) and volume indexed by T1-weighted imaging. Forty-three middle-aged adults with parental family history of AD received baseline lumbar puncture and MRI approximately 3.5 years later. Voxel-wise image analysis methods were used to test whether baseline CSF Aβ42, total tau (T-Tau), phosphorylated tau (P-Tau) and neurofilament light protein predicted brain microstructure as indexed by DTI and gray matter volume indexed by T1-weighted imaging. T-Tau and T-Tau/Aβ42 were widely correlated with indices of brain microstructure (mean, axial, and radial diffusivity), notably in white matter regions adjacent to gray matter structures affected in the earliest stages of AD. None of the CSF biomarkers were related to gray matter volume. Elevated P-Tau and P-Tau/Aβ42 levels were associated with lower recognition performance on the Rey Auditory Verbal Learning Test. Overall, the results suggest that CSF biomarkers are related to brain microstructure in healthy adults with elevated risk of developing AD. Furthermore, the results clearly suggest that early pathological changes in AD can be detected with DTI and occur not only in cortex, but also in white matter

    Relationships between cardiorespiratory fitness, hippocampal volume, and episodic memory in a population at risk for Alzheimer’s disease

    Get PDF
    Introduction: Cardiorespiratory fitness (CRF) has been shown to be related to brain health in older adults. In individuals at risk for developing Alzheimer\u27s disease (AD), CRF may be a modifiable risk factor that could attenuate anticipated declines in brain volume and episodic memory. The objective of this study was to determine the association between CRF and both hippocampal volume and episodic memory in a cohort of cognitively healthy older adults with familial and/or genetic risk for Alzheimer\u27s disease (AD). Methods: Eighty‐six enrollees from the Wisconsin Registry for Alzheimer\u27s Prevention participated in this study. Participants performed a graded maximal exercise test, underwent a T‐1 anatomical magnetic resonance imaging scan, and completed the Rey Auditory Verbal Learning Test (RAVLT). Results: There were no significant relationships between CRF and HV or RAVLT memory scores for the entire sample. When the sample was explored on the basis of gender, CRF was significantly associated with hippocampal volume for women. For men, significant positive associations were observed between CRF and RAVLT memory scores. Summary: These results suggest that CRF may be protective against both hippocampal volume and episodic memory decline in older adults at risk for AD, but that the relationships may be gender specific

    Evaluation of the IgG antibody response to SARS CoV-2 infection and performance of a lateral flow immunoassay: cross-sectional and longitudinal analysis over 11 months

    Get PDF
    OBJECTIVE: To evaluate the dynamics and longevity of the humoral immune response to SARS-CoV-2 infection and assess the performance of professional use of the UK-RTC AbC-19 Rapid Test lateral flow immunoassay (LFIA) for the target condition of SARS-CoV-2 spike protein IgG antibodies. DESIGN: Nationwide serological study. SETTING: Northern Ireland, UK, May 2020–February 2021. PARTICIPANTS: Plasma samples were collected from a diverse cohort of individuals from the general public (n=279), Northern Ireland healthcare workers (n=195), pre-pandemic blood donations and research studies (n=223) and through a convalescent plasma programme (n=183). Plasma donors (n=101) were followed with sequential samples over 11 months post-symptom onset. MAIN OUTCOME MEASURES: SARS-CoV-2 antibody levels in plasma samples using Roche Elecsys Anti-SARS-CoV-2 IgG/IgA/IgM, Abbott SARS-CoV-2 IgG and EuroImmun IgG SARS-CoV-2 ELISA immunoassays over time. UK-RTC AbC-19 LFIA sensitivity and specificity, estimated using a three-reference standard system to establish a characterised panel of 330 positive and 488 negative SARS-CoV-2 IgG samples. RESULTS: We detected persistence of SARS-CoV-2 IgG antibodies for up to 10 months post-infection, across a minimum of two laboratory immunoassays. On the known positive cohort, the UK-RTC AbC-19 LFIA showed a sensitivity of 97.58% (95.28% to 98.95%) and on known negatives, showed specificity of 99.59% (98.53 % to 99.95%). CONCLUSIONS: Through comprehensive analysis of a cohort of pre-pandemic and pandemic individuals, we show detectable levels of IgG antibodies, lasting over 46 weeks when assessed by EuroImmun ELISA, providing insight to antibody levels at later time points post-infection. We show good laboratory validation performance metrics for the AbC-19 rapid test for SARS-CoV-2 spike protein IgG antibody detection in a laboratory-based setting
    corecore