182 research outputs found

    A Bag-of-Paths Node Criticality Measure

    Full text link
    This work compares several node (and network) criticality measures quantifying to which extend each node is critical with respect to the communication flow between nodes of the network, and introduces a new measure based on the Bag-of-Paths (BoP) framework. Network disconnection simulation experiments show that the new BoP measure outperforms all the other measures on a sample of Erdos-Renyi and Albert-Barabasi graphs. Furthermore, a faster (still O(n^3)), approximate, BoP criticality relying on the Sherman-Morrison rank-one update of a matrix is introduced for tackling larger networks. This approximate measure shows similar performances as the original, exact, one

    Developments in the theory of randomized shortest paths with a comparison of graph node distances

    Get PDF
    There have lately been several suggestions for parametrized distances on a graph that generalize the shortest path distance and the commute time or resistance distance. The need for developing such distances has risen from the observation that the above-mentioned common distances in many situations fail to take into account the global structure of the graph. In this article, we develop the theory of one family of graph node distances, known as the randomized shortest path dissimilarity, which has its foundation in statistical physics. We show that the randomized shortest path dissimilarity can be easily computed in closed form for all pairs of nodes of a graph. Moreover, we come up with a new definition of a distance measure that we call the free energy distance. The free energy distance can be seen as an upgrade of the randomized shortest path dissimilarity as it defines a metric, in addition to which it satisfies the graph-geodetic property. The derivation and computation of the free energy distance are also straightforward. We then make a comparison between a set of generalized distances that interpolate between the shortest path distance and the commute time, or resistance distance. This comparison focuses on the applicability of the distances in graph node clustering and classification. The comparison, in general, shows that the parametrized distances perform well in the tasks. In particular, we see that the results obtained with the free energy distance are among the best in all the experiments.Comment: 30 pages, 4 figures, 3 table

    Two betweenness centrality measures based on Randomized Shortest Paths

    Full text link
    This paper introduces two new closely related betweenness centrality measures based on the Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality measures based on shortest paths and more recent methods considering random walks or current flows. The framework defines Boltzmann probability distributions over paths of the network which focus on the shortest paths, but also take into account longer paths depending on an inverse temperature parameter. RSP's have previously proven to be useful in defining distance measures on networks. In this work we study their utility in quantifying the importance of the nodes of a network. The proposed RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. We present the derivations of these measures and how they can be computed in an efficient way. In addition, we show with real world examples the potential of the RSP betweenness centralities in identifying interesting nodes of a network that more traditional methods might fail to notice.Comment: Minor updates; published in Scientific Report

    A maximum entropy approach to multiple classifiers combination

    Get PDF
    In this paper,we present amaximumentropy (maxent) approach to the fusion of experts opinions, or classifiers outputs, problem. Themaxent approach is quite versatile and allows us to express in a clear, rigorous,way the a priori knowledge that is available on the problem. For instance, our knowledge about the reliability of the experts and the correlations between these experts can be easily integrated: Each piece of knowledge is expressed in the form of a linear constraint. An iterative scaling algorithm is used in order to compute the maxent solution of the problem. The maximum entropy method seeks the joint probability density of a set of random variables that has maximum entropy while satisfying the constraints. It is therefore the “most honest” characterization of our knowledge given the available facts (constraints). In the case of conflicting constraints, we propose to minimise the “lack of constraints satisfaction” or to relax some constraints and recompute the maximum entropy solution. The maxent fusion rule is illustrated by some simulations

    Covariance and Correlation Kernels on a Graph in the Generalized Bag-of-Paths Formalism

    Get PDF
    This work derives closed-form expressions computing the expectation of co-presence and of number of co-occurrences of nodes on paths sampled from a network according to general path weights (a bag of paths). The underlying idea is that two nodes are considered as similar when they often appear together on (preferably short) paths of the network. The different expressions are obtained for both regular and hitting paths and serve as a basis for computing new covariance and correlation measures between nodes, which are valid positive semi-definite kernels on a graph. Experiments on semi-supervised classification problems show that the introduced similarity measures provide competitive results compared to other state-of-the-art distance and similarity measures between nodes

    Randomized Optimal Transport on a Graph: framework and new distance measures

    Full text link
    The recently developed bag-of-paths (BoP) framework consists in setting a Gibbs-Boltzmann distribution on all feasible paths of a graph. This probability distribution favors short paths over long ones, with a free parameter (the temperature TT) controlling the entropic level of the distribution. This formalism enables the computation of new distances or dissimilarities, interpolating between the shortest-path and the resistance distance, which have been shown to perform well in clustering and classification tasks. In this work, the bag-of-paths formalism is extended by adding two independent equality constraints fixing starting and ending nodes distributions of paths (margins). When the temperature is low, this formalism is shown to be equivalent to a relaxation of the optimal transport problem on a network where paths carry a flow between two discrete distributions on nodes. The randomization is achieved by considering free energy minimization instead of traditional cost minimization. Algorithms computing the optimal free energy solution are developed for two types of paths: hitting (or absorbing) paths and non-hitting, regular, paths, and require the inversion of an n×nn \times n matrix with nn being the number of nodes. Interestingly, for regular paths on an undirected graph, the resulting optimal policy interpolates between the deterministic optimal transport policy (T→0+T \rightarrow 0^{+}) and the solution to the corresponding electrical circuit (T→∞T \rightarrow \infty). Two distance measures between nodes and a dissimilarity between groups of nodes, both integrating weights on nodes, are derived from this framework.Comment: Preprint paper to appear in Network Science journal, Cambridge University Pres

    Sparse Randomized Shortest Paths Routing with Tsallis Divergence Regularization

    Full text link
    This work elaborates on the important problem of (1) designing optimal randomized routing policies for reaching a target node t from a source note s on a weighted directed graph G and (2) defining distance measures between nodes interpolating between the least cost (based on optimal movements) and the commute-cost (based on a random walk on G), depending on a temperature parameter T. To this end, the randomized shortest path formalism (RSP, [2,99,124]) is rephrased in terms of Tsallis divergence regularization, instead of Kullback-Leibler divergence. The main consequence of this change is that the resulting routing policy (local transition probabilities) becomes sparser when T decreases, therefore inducing a sparse random walk on G converging to the least-cost directed acyclic graph when T tends to 0. Experimental comparisons on node clustering and semi-supervised classification tasks show that the derived dissimilarity measures based on expected routing costs provide state-of-the-art results. The sparse RSP is therefore a promising model of movements on a graph, balancing sparse exploitation and exploration in an optimal way

    Randomized Shortest Paths with Net Flows and Capacity Constraints

    Full text link
    This work extends the randomized shortest paths (RSP) model by investigating the net flow RSP and adding capacity constraints on edge flows. The standard RSP is a model of movement, or spread, through a network interpolating between a random-walk and a shortest-path behavior [30, 42, 49]. The framework assumes a unit flow injected into a source node and collected from a target node with flows minimizing the expected transportation cost, together with a relative entropy regularization term. In this context, the present work first develops the net flow RSP model considering that edge flows in opposite directions neutralize each other (as in electric networks), and proposes an algorithm for computing the expected routing costs between all pairs of nodes. This quantity is called the net flow RSP dissimilarity measure between nodes. Experimental comparisons on node clustering tasks indicate that the net flow RSP dissimilarity is competitive with other state-of-the-art dissimilarities. In the second part of the paper, it is shown how to introduce capacity constraints on edge flows, and a procedure is developed to solve this constrained problem by exploiting Lagrangian duality. These two extensions should improve significantly the scope of applications of the RSP framework

    Maximum likelihood estimation for randomized shortest paths with trajectory data

    Get PDF
    Randomized shortest paths (RSPs) are tool developed in recent years for different graph and network analysis applications, such as modelling movement or flow in networks. In essence, the RSP framework considers the temperature-dependent Gibbs–Boltzmann distribution over paths in the network. At low temperatures, the distribution focuses solely on the shortest or least-cost paths, while with increasing temperature, the distribution spreads over random walks on the network. Many relevant quantities can be computed conveniently from this distribution, and these often generalize traditional network measures in a sensible way. However, when modelling real phenomena with RSPs, one needs a principled way of estimating the parameters from data. In this work, we develop methods for computing the maximum likelihood estimate of the model parameters, with focus on the temperature parameter, when modelling phenomena based on movement, flow or spreading processes. We test the validity of the derived methods with trajectories generated on artificial networks as well as with real data on the movement of wild reindeer in a geographic landscape, used for estimating the degree of randomness in the movement of the animals. These examples demonstrate the attractiveness of the RSP framework as a generic model to be used in diverse applications. randomized shortest paths; random walk; shortest path; parameter estimation; maximum likelihood; animal movement modellingpublishedVersio
    • 

    corecore