361 research outputs found

    Nested Lattice Codes for Gaussian Relay Networks with Interference

    Full text link
    In this paper, a class of relay networks is considered. We assume that, at a node, outgoing channels to its neighbors are orthogonal, while incoming signals from neighbors can interfere with each other. We are interested in the multicast capacity of these networks. As a subclass, we first focus on Gaussian relay networks with interference and find an achievable rate using a lattice coding scheme. It is shown that there is a constant gap between our achievable rate and the information theoretic cut-set bound. This is similar to the recent result by Avestimehr, Diggavi, and Tse, who showed such an approximate characterization of the capacity of general Gaussian relay networks. However, our achievability uses a structured code instead of a random one. Using the same idea used in the Gaussian case, we also consider linear finite-field symmetric networks with interference and characterize the capacity using a linear coding scheme.Comment: 23 pages, 5 figures, submitted to IEEE Transactions on Information Theor

    Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock

    Full text link
    We report 10-ps correlated photon pair generation in periodically-poled reverse-proton-exchange lithium niobate waveguides with integrated mode demultiplexer at a wavelength of 1.5-um and a clock of 10 GHz. Using superconducting single photon detectors, we observed a coincidence to accidental count ratio (CAR) as high as 4000. The developed photon-pair source may find broad application in quantum information systems as well as quantum entanglement experiments.Comment: 6 pages, 4 figures, presented at 2007 CLEO conferenc

    Single-photon detection timing jitter in a visible light photon counter

    Full text link
    Visible light photon counters (VLPCs) offer many attractive features as photon detectors, such as high quantum efficiency and photon number resolution. We report measurements of the single-photon timing jitter in a VLPC, a critical performance factor in a time-correlated single-photon counting measurement, in a fiber-coupled closed-cycle cryocooler. The measured timing jitter is 240 ps full-width-at-half-maximum at a wavelength of 550 nm, with a dark count rate of 25 000 counts per second. The timing jitter increases modestly at longer wavelengths to 300 ps at 1000 nm, and increases substantially at lower bias voltages as the quantum efficiency is reduced
    • …
    corecore