3 research outputs found

    A systems model of phosphorylation for inflammatory signaling events

    Get PDF
    published_or_final_versio

    Ibrutinib induces chromatin reorganisation of chronic lymphocytic leukaemia cells

    Get PDF
    Chronic lymphocytic leukaemia (CLL) is the most common leukaemia in Western countries. It has recently been shown that the homogeneity of the chromatin landscape between CLL cells contrasts with the important observed genetic heterogeneity of the disease. To gain further insight into the consequences of disease evolution on the epigenome’s plasticity, we monitored changes in chromatin structure occurring in vivo in CLL cells from patients receiving continuous Ibrutinib treatment. Ibrutinib, an oral inhibitor of the Bruton’s tyrosine kinase (BTK) has proved to be remarkably efficient against treatment naïve (TN), heavily pre-treated and high-risk chronic lymphocytic leukaemia (CLL), with limited adverse events. We established that the chromatin landscape is significantly and globally affected in response to Ibrutinib. However, we observed that prior to treatment, CLL cells show qualitative and quantitative variations in chromatin structure correlated with both EZH2 protein level and cellular response to external stimuli. Then, under prolonged exposure to Ibrutinib, a loss of the two marks associated with lysine 27 (acetylation and trimethylation) was observed. Altogether, these data indicate that the epigenome of CLL cells from the peripheral blood change dynamically in response to stimuli and suggest that these cells might adapt to the Ibrutinib “hit” in a process leading toward a possible reduced sensitivity to treatment

    Kinetic regulation of multi-ligand binding proteins

    Get PDF
    Background: Second messengers, such as calcium, regulate the activity of multisite binding proteins in a concentration-dependent manner. For example, calcium binding has been shown to induce conformational transitions in the calcium-dependent protein calmodulin, under steady state conditions. However, intracellular concentrations of these second messengers are often subject to rapid change. The mechanisms underlying dynamic ligand-dependent regulation of multisite proteins require further elucidation. Results: In this study, a computational analysis of multisite protein kinetics in response to rapid changes in ligand concentrations is presented. Two major physiological scenarios are investigated: i) Ligand concentration is abundant and the ligand-multisite protein binding does not affect free ligand concentration, ii) Ligand concentration is of the same order of magnitude as the interacting multisite protein concentration and does not change. Therefore, buffering effects significantly influence the amounts of free ligands. For each of these scenarios the influence of the number of binding sites, the temporal effects on intermediate apo- and fully saturated conformations and the multisite regulatory effects on target proteins are investigated. Conclusions: The developed models allow for a novel and accurate interpretation of concentration and pressure jump-dependent kinetic experiments. The presented model makes predictions for the temporal distribution of multisite protein conformations in complex with variable numbers of ligands. Furthermore, it derives the characteristic time and the dynamics for the kinetic responses elicited by a ligand concentration change as a function of ligand concentration and the number of ligand binding sites. Effector proteins regulated by multisite ligand binding are shown to depend on ligand concentration in a highly nonlinear fashion
    corecore