35 research outputs found
In vitro biofilms and antifungal susceptibility of dermatophyte and non-dermatophyte moulds involved in foot mycosis
Tinea pedis and onychomycosis are among the commonest fungal diseases in the world. Dermatophytes and, less frequently, non-dermatophyte moulds are aetiological agents of foot mycosis and are capable of forming biofilms. Fungal biofilm has demonstrated increasing drug resistance. This work aims to evaluate, in vitro, the ability to form biofilm and the susceptibility to antifungal drugs of sessile dermatophytes and non-dermatophyte moulds involved in foot mycosis. Thirty-six dermatophytes and non-dermatophyte moulds isolated from Tunisian patients with foot mycoses, and identified with MALDI-TOF have been tested. MICs of fluconazole, econazole, itraconazole, terbinafine and griseofulvin were carried out using CLSI broth microdilution method. The ability to form biofilm and antifungal activities of drugs against fungal biofilm formation has been quantified by Crystal Violet and Safranin Red staining. Biomass quantification revealed that all species studied were able to form biofilms in vitro after 72 hours. Fluconazole, econazole, itraconazole and terbinafine inhibited fungal growth with MIC values ranging from 0.031 to >64 Οg mL(-1) . The best antifungal activity has been obtained with terbinafine against Fusarium solani. Econazole showed the highest activity against fungal biofilm formation. These findings can help clinicians to develop the appropriate therapy of foot mycosis
Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) under Aerobic Conditions
Bacterial and archaeal aerobic communities were recovered from sediments from the shallow El-Djerid salt lake in Tunisia, and their salinity gradient distribution was established. Six samples for physicochemical and microbiological analyses were obtained from 6 saline sites in the lake for physico-chemical and microbiological analyses. All samples studied were considered hypersaline with NaCl concentration ranging from 150 to 260âg/L. A specific halophilic microbial community was recovered from each site, and characterization of isolated microorganisms was performed via both phenotypic and phylogenetic approaches. Only one extreme halophilic organism, domain Archaea, was isolated from site 4 only, whereas organisms in the domain Bacteria were recovered from the five remaining sampling sites that contained up to 250âg/L NaCl. Members of the domain Bacteria belonged to genera Salicola, Pontibacillus, Halomonas, Marinococcus, and Halobacillus, whereas the only member of domain Archaea isolated belonged to the genus Halorubrum. The results of this study are discussed in terms of the ecological significance of these microorganisms in the breakdown of organic matter in Lake El-Djerid and their potential for industry applications
Identification of Disalicyloyl Curcumin as a Potential DNA Polymerase Inhibitor for Marekâs Disease Herpesvirus: A Computational Study Using Virtual Screening and Molecular Dynamics Simulations
Marekâs disease virus (MDV) is a highly contagious and persistent virus that causes T-lymphoma in chickens, posing a significant threat to the poultry industry despite the availability of vaccines. The emergence of new virulent strains has further intensified the challenge of designing effective antiviral drugs for MDV. In this study, our main objective was to identify novel antiviral phytochemicals through in silico analysis. We employed Alphafold to construct a three-dimensional (3D) structure of the MDV DNA polymerase, a crucial enzyme involved in viral replication. To ensure the accuracy of the structural model, we validated it using tools available at the SAVES server. Subsequently, a diverse dataset containing thousands of compounds, primarily derived from plant sources, was subjected to molecular docking with the MDV DNA polymerase model, utilizing AutoDock software V 4.2. Through comprehensive analysis of the docking results, we identified Disalicyloyl curcumin as a promising drug candidate that exhibited remarkable binding affinity, with a minimum energy of â12.66 Kcal/mol, specifically targeting the DNA polymerase enzyme. To further assess its potential, we performed molecular dynamics simulations, which confirmed the stability of Disalicyloyl curcumin within the MDV system. Experimental validation of its inhibitory activity in vitro can provide substantial support for its effectiveness. The outcomes of our study hold significant implications for the poultry industry, as the discovery of efficient antiviral phytochemicals against MDV could substantially mitigate the economic losses associated with this devastating disease.Funder: King Saud University, Riyadh, Saudi Arabia; Grant(s): RSPD2023R74
Prevalence, Etiology, and Risk Factors of Tinea Pedis and Tinea Unguium in Tunisia
Background. Foot mycoses are a frequent disease that represents a public health problem worldwide. Objectives. This study aims to evaluate the epidemiology of foot mycoses among Tunisian patients, in order to determine the fungal etiological agents and to identify possible risk factors. Patients and Methods. A prospective study of three hundred and ninety-two patients was undertaken during one year (2013-2014). All subjects were asked to collect demographic data related to the risk factors of foot mycoses. A complete mycological diagnosis was carried out on all patients. Results. A total of 485 samples were collected; tinea pedis and tinea unguium were confirmed in 88.2% of cases. Dermatophytes were isolated in 70.5% and the most frequent pathogen was Trichophyton rubrum (98.1%), followed by yeasts (17.7%) commonly Candida parapsilosis. Non-dermatophyte molds (NDMs) were observed in 8.02% cases and Fusarium sp. was the frequent genus (29.1%). The main predisposing factors of fungal foot infections were practicing ritual washing (56.6%) and frequentation of communal showers (50.5%). Conclusion. This is a recent survey of foot mycoses in Tunisia. Epidemiological studies can be useful to eradicate these infections and to provide further measures of hygiene and education
Core proteome mediated subtractive approach for the identification of potential therapeutic drug target against the honeybee pathogen Paenibacillus larvae
Background & Objectives American foulbrood (AFB), caused by the highly virulent, spore-forming bacterium Paenibacillus larvae, poses a significant threat to honey bee brood. The widespread use of antibiotics not only fails to effectively combat the disease but also raises concerns regarding honey safety. The current computational study was attempted to identify a novel therapeutic drug target against P. larvae, a causative agent of American foulbrood disease in honey bee. Methods We investigated effective novel drug targets through a comprehensive in silico pan-proteome and hierarchal subtractive sequence analysis. In total, 14 strains of P. larvae genomes were used to identify core genes. Subsequently, the core proteome was systematically narrowed down to a single protein predicted as the potential drug target. Alphafold software was then employed to predict the 3D structure of the potential drug target. Structural docking was carried out between a library of phytochemicals derived from traditional Chinese flora (n > 36,000) and the potential receptor using Autodock tool 1.5.6. Finally, molecular dynamics (MD) simulation study was conducted using GROMACS to assess the stability of the best-docked ligand. Results Proteome mining led to the identification of Ketoacyl-ACP synthase III as a highly promising therapeutic target, making it a prime candidate for inhibitor screening. The subsequent virtual screening and MD simulation analyses further affirmed the selection of ZINC95910054 as a potent inhibitor, with the lowest binding energy. This finding presents significant promise in the battle against P. larvae. Conclusions Computer aided drug design provides a novel approach for managing American foulbrood in honey bee populations, potentially mitigating its detrimental effects on both bee colonies and the honey industry
Production and partial characterization of chitinase from a halotolerant Planococcus rifitoensis strain M2-26
peer reviewedThis paper is the first to investigate the production and partial characterization of the chitinase enzyme from a moderately halophilic bacterium Planococcus rifitoensis strain M2-26, earlier isolated from a shallow salt lake in Tunisia. The impact of salt, salinity concentration, pH, carbon and nitrogen sources on chitinase production and activity have been determined. This is the first report on a high salt-tolerant chitinase from P. rifitoensis, since it was active at high salinity (from 5 to 30% NaCl) as well as in the absence of salt. This enzyme showed optimal activity at 70 C and retained up to 82 and 66% of its original activity at 80 or 90 C, respectively. The activity of the enzyme was also shown over a wide pH range (from 5 to 11). For characterization of the enzyme activity, the chitinase secreted in the culture supernatant was partially purified. The preliminary study of the concentrated dialysed supernatant on native PAGE showed at least three
chitinases produced by strain M2-26, with highest activity approximately at 65 kDa. Thus, the thermo-tolerant and high salt-tolerant chitinases produced by P. rifitoensis strain M2-26 could be useful for application in diverse areas such as biotechnology and agro-industry
Antioxidant and Antimicrobial Potentials of Seed Oil from Carthamus tinctorius L. in the Management of Skin Injuries
Infection of skin injuries by pathogenic microbial strains is generally associated if not treated with a lasting wound bed oxidative stress status, a delay in healing process, and even wound chronicity with several human health complications. The aim of the current study was to explore the antioxidant and antimicrobial potentialities of safflower (Carthamus tinctorius L.) extracted oil from seeds by cold pressing which would be beneficial in the management of skin wounds. Antioxidant capacity of the oil was evaluated (scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2â˛-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP)). Total phenolic, total flavonoid, total carotenoid, and total chlorophyll contents were determined. Antimicrobial activities of safflower oil were tested against 10 skin pathogenic microorganisms: 4 bacterial strains (Escherichia coli, Enterobacter cloacae, Staphylococcus aureus, and Streptococcus agalactiae), 3 yeast species strains (Candida albicans, Candida parapsilosis, and Candida sake), and 3 fungi species (Aspergillus niger, Penicillium digitatum, and Fusarium oxysporum). A notable antioxidant capacity was demonstrated for the tested oil that exhibited moreover high antibacterial effects by both bacteriostatic and bactericidal pathways including lysozyme activity. An antifungal effect was further observed on the sporeâs germination. Safflower oil could be considered as a good natural alternative remedy in the management of skin wounds and their possible microbial infections
SUPPLEMENTARY (For MD) An integrative pan-genome and subtractive proteomics approach for the identification of potential novel therapeutic drug target against antibiotic resistant honeybee pathogen Paenibacillus larvae
<p><strong>Parameters</strong></p><p>Force field: AMBER ff19SB</p><p>Water type: TIP3P</p><p>Ions: NaCl </p><p>Ligand topology force field: GAFF2</p><p>Temperature: 298k</p><p>Pressure: 1 bar</p><p>minimization step: 20000 on 5 nanoseconds</p><p>initial velocity is changed by changing "ntx" and "ig"</p><p>C2: ntx = 5 , ig = 8</p><p>C3: ntx = 2 , ig = 5</p><p> </p><p><strong>Uploads</strong>- </p><p>1. Zip file of all 3 main files</p><p>2. Unzip file of C1 (Trajectory, PDB complex after each 10 ns run, and Mp4 video of Complex)</p><p>3. Zip file of C1</p><p>4. Unzip file of C2 (Trajectory, PDB complex after each 10 ns run, and Mp4 video of Complex)</p><p>5. Zip file of C2</p><p>6. Unzip file of C3 (Trajectory, PDB complex after each 10 ns run, and Mp4 video of Complex)</p><p>7. Zip file of C3</p><p>8. Zip and unzip file of <strong>Initial</strong> PDB of complex prior to MD simulation with <strong>Post</strong> MD PDB (C1, C2, C3)</p><p>9. Zip file of <strong>topology</strong> files for C1, C2, and C3</p>
Biological control of Botrytis cinerea on stem wounds with moderately halophilic bacteria
International audienceInfection of tomato stem wounds by Botrytis cinerea is an important problem which can cause severe economic losses in greenhouse tomato crops. Three moderately halophilic bacteria were tested for their ability to protect pruning wounds from attacks by B. cinerea under growth chamber conditions. The severity of the disease estimated by the length of the rotted stem was used to calculate the area under the disease progress curves (AUDPC). Bacterial antagonists (B1, B2 and B3) were very effective in controlling Botrytis-infection on the tomato stems during the first 6 days and later by the end of the experiment. Plants treated with Bacillus subtilis (B1) had the lowest AUDPC (0). It was followed by B. subtilis (B3) and Halomonas sp. (B2) with AUDPC of 9.8 and 17.02, respectively. While the B1 strain best inhibited grey mold development when applied as young culture (24 h), the B3 strain performed better as an older culture (48 h). In contrast to the results obtained with Bacillus species, the efficacy of the bacterial treatment B2 seems to be independent of the growth phase. The co-cultures with fungal spores and either B. subtilis (B1) or Halomonas sp. (B2) applied as a 24 h bacterial culture completely inhibited the germination of B. cinerea after 24 h at 21_