132 research outputs found

    Assessment of water quality index for the groundwater in Tumkur taluk, Karnataka state, India

    Get PDF
    The present work is aimed at assessing the water quality index (WQI) for the groundwater of Tumkur taluk. This has been determined by collecting groundwater samples and subjecting the samples to a comprehensive physicochemical analysis. For calculating the WQI, the following 12 parameters have been considered: pH, total hardness, calcium, magnesium, bicarbonate, chloride, nitrate, sulphate, total dissolved solids, iron, manganese and fluorides. The WQI for these samples ranges from 89.21 to 660.56. The high value of WQI has been found to be mainly from the higher values of iron, nitrate, total dissolved solids, hardness, fluorides, bicarbonate and manganese in the groundwater. The results of analyses have been used to suggest models for predicting water quality. The analysis reveals that the groundwater of the area needs some degree of treatment before consumption, and it also needs to be protected from the perils of contamination

    QUANTIFICATION OF ROPINIROLE HYDROCHLORIDE IN API AND TABLETS BY NOVEL STABILITY-INDICATING RP-HPLC METHOD: IT’S VALIDATION AND FORCED DEGRADATION STUDIES

    Get PDF
    Objective: A simple, economical, robust and stability-indicating reverse phase high performance liquid chromatography method was developed and validated for the quantification of ropinirole hydrochloride in API and tablets to achieve shorter retention time, to minimize human error by avoiding the use of buffers and weighing procedure and analyze more number of samples in shorter period of time with good accuracy. Methods: The chromatographic conditions for separation of ropinirole hydrochloride was carried out using Gemini NX C18 column (15 cm x 4.6 mm), 5 µm particle size with the mobile phase composing of methanol: acetonitrile (70:30 v/v), delivered at flow rate 0.7 ml/min and UV detection wavelength at 250 nm. Results: The retention time was observed at 2.718 min. The system suitability results were found to be within limits. The method was precise, with lower than 2 %RSD and the calibration curve was linear (r2=1) over a concentration range of 2.5-160 µg/ml. The detection and quantification limit was found to be 0.045 µg/ml and 0.15 µg/ml, respectively. Recovery of the drug was found between 100.09-100.19%. The assay of ropinirole hydrochloride in ROPITOR® and ROPARK® tablets were found to be 100.4 and 103.60 %, respectively. The forced degradation studies were carried out to demonstrate the specificity of the method by exposing the API under conditions of hydrolysis, oxidation, thermal and photolytic as per ICH Q1A(R2) guidelines. Conclusion: The low coefficient of variation and agreeable recovery confirmed that the newly developed method could be employed for routine analysis of ropinirole hydrochloride in API and tablets

    MAGNETIC AND ELECTRICAL PROPERTIES OF ELECTRON BEAM GUN DEPOSITED [Mn/Al] MULTILAYERED FILMS

    Get PDF
    By following electron beam gun evaporation technique, the magnetic multilayers in the configuration, [Mn(60nm)/Al(20nm)]n; n =1, 2 and 9 were deposited at 473K,  under high vacuum conditions. From grazing incidence X- ray diffraction (GIXRD) studies, the grain sizes were determined and they were in the order of few nanometers. Atomic force microscope (AFM) were employed to study surface structure and grain sizes. The magnetization as a function of field at 150K and 200K have been measured using the MPMS SQUID - vibrating sample magnetometer (VSM). From the hysteresis loops, coercive field, saturation magnetization, remanent magnetization and antiferromagnetic coupling were determined. All the three films hinted at the existence of at antiferromagnetic interaction between Mn layers through Al layer. Electrical resistivity in the temperature range from 5K to 300K has been measured. Films exhibited semiconducting to metallic transition. The power law variation of resistivity with temperature was established for the metallic region. Conductivity data for semiconducting region of a film has been analysed using polaran hopping models, activation energy and density of states at Fermi level were established. This is for the first time that antiferromagnetic coupling between Mn layers through interfacer layer and semiconducting to metallic transition have been noticed in the present configuration of [Mn/Al] multilayers

    High temperature CO2 sorption using Ca(OH)2 in pilot scale packed column

    Get PDF
    Carbon dioxide is the major content of greenhouse gases, which is released by many industries such as paper, cement and steel industries etc. Removal or separation of CO2 from the atmosphere is a challenging task for the researchers as it related to the human health and affects environment. Many methods and techniques have been tried for the removal of CO2, among them sorption method was found to be more simple and economical. Majority of research work related to CO2 sequestration was carried out using Thermo Gravimetric Analysis (TGA). In the present study an attempt was made to study high temperature CO2 sorption using self-fabricated packed bed column in pilot scale. In this work the absorption column was designed to utilize the flue gas temperature for effective sorption of carbon dioxide using Calcium hydroxide [Ca(OH)2] as a sorbent. The Ca(OH)2 was made into cylindrical extrudates. The gas mixture containing nitrogen and carbon dioxide was heated and subjected to CO2 sorption using Ca(OH)2. The sorption process for various temperatures was studied at a constant flow rate and fixed bed height. Concentration of CO2 was measured using a flue gas analyzer (NDIR sensors). The temperature was found to be major factor affecting sorption process. The optimum temperature was found to be 300 °C. Increase in the temperature above 300 °C, resulted in sintering and weight loss of the sorbent. The conversion of Ca(OH)2 to CaCO3 is confirmed by FT-IR, Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis(EDAX) and XRD

    Improving Language Model Predictions via Prompts Enriched with Knowledge Graphs

    Get PDF
    Despite advances in deep learning and knowledge graphs (KGs), using language models for natural language understanding and question answering remains a challenging task. Pre-trained language models (PLMs) have shown to be able to leverage contextual information, to complete cloze prompts, next sentence completion and question answering tasks in various domains. Unlike structured data querying in e.g. KGs, mapping an input question to data that may or may not be stored by the language model is not a simple task. Recent studies have highlighted the improvements that can be made to the quality of information retrieved from PLMs by adding auxiliary data to otherwise naive prompts. In this paper, we explore the effects of enriching prompts with additional contextual information leveraged from the Wikidata KG on language model performance. Specifically, we compare the performance of naive vs. KG-engineered cloze prompts for entity genre classification in the movie domain. Selecting a broad range of commonly available Wikidata properties, we show that enrichment of cloze-style prompts with Wikidata information can result in a significantly higher recall for the investigated BERT and RoBERTa large PLMs. However, it is also apparent that the optimum level of data enrichment differs between models

    Magnetic and Low Temperature Conductivity Studies in Oxidized Nano Ni Films

    Get PDF
    A set of single layered nanostructured Ni films of thickness, t = 25 nm, 50 nm, 75 nm and 100 nm have been deposited using electron beam gun evaporation technique at 473 K under high vacuum condition. From the grazing incidence X-ray diffraction (GIXRD) studies, NiO phase formation has been noted. Grain sizes of the films were determined. The microstructure was examined by scanning electron microscope (SEM) studies. Average surface roughness was determined by atomic force microscope (AFM). The room temperature magnetization has been measured using the vibrating sample magnetometer (VSM). The coercive field was observed to be increasing with increasing t and became maximum for t = 75 nm and decreases for further increase in t. The behavior of coercive field with t indicated softness of the films. Low temperature electrical conductivity in the range from 5 K to 300 K has been measured. Temperature dependence of electrical conductivity showed semiconducting behavior. At temperatures above θD/2 (θD is the Debye temperature), the conductivity behavior has been understood in the light of Mott’s small polaron hopping model and activation energies were determined. An attempt has been made to understand conductivity variation below θD/2 using variable range hopping models due to Mott and Greaves. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2371

    4-(Benz­yloxy)phenyl 4-hexa­dec­yloxy-3-meth­oxy­benzoate

    Get PDF
    In the title compound, C37H50O5, the central benzene ring makes dihedral angles of 39.72 (14) and 64.43 (13)° with the benzyl and 3-meth­oxy­benzoate rings, respectively. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions involving the central benzene ring and the benzene ring closest to the aliphatic chain

    Promising Noninvasive Cellular Phenotype in Prostate Cancer Cells Knockdown of Matrix Metalloproteinase 9

    Get PDF
    Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics

    Mobile phone based mini-spectrometer for rapid screening of skin cancer

    Get PDF
    We demonstrate a highly sensitive mobile phone based spectrometer that has potential to detect cancerous skin lesions in a rapid, non-invasive manner. Earlier reports of low cost spectrometers utilize the camera of the mobile phone to image the field after moving through a diffraction grating. These approaches are inherently limited by the closed nature of mobile phone image sensors and built in optical elements. The system presented uses a novel integrated grating and sensor that is compact, accurate and calibrated. Resolutions of about 10 nm can be achieved. Additionally, UV and visible LED excitation sources are built into the device. Data collection and analysis is simplified using the wireless interfaces and logical control on the smart phone. Furthermore, by utilizing an external sensor, the mobile phone camera can be used in conjunction with spectral measurements. We are exploring ways to use this device to measure endogenous fluorescence of skin in order to distinguish cancerous from non-cancerous lesions with a mobile phone based dermatoscope
    corecore