1,281 research outputs found

    Laughlin states on the sphere as representations of Uq(sl(2))

    Full text link
    We discuss quantum algebraic structures of the systems of electrons or quasiparticles on a sphere of which center a magnetic monople is located on. We verify that the deformation parameter is related to the filling ratio of the particles in each case.Comment: 8 pages, Late

    Kirsten-boeing Propeller

    Get PDF
    The advantages of the Kirsten-Boeing propeller consist essentially in the adjustability of the thrust in any desired direction, in the plane perpendicular to the axis of rotation of the system, and in its high efficiency. The propeller, which greatly resembles the paddle wheels used on river steamers, differs fundamentally from the latter, in that all the blades work simultaneously in the fluid medium (air or water)

    Puckering Free Energy of Pyranoses: an NMR and Metadynamics--Umbrella Sampling Investigation

    Full text link
    We present the results of a combined metadynamics--umbrella sampling investigation of the puckered conformers of pyranoses described using the gromos 45a4 force field. The free energy landscape of Cremer--Pople puckering coordinates has been calculated for the whole series of alpha and beta aldohexoses, showing that the current force field parameters fail in reproducing proper puckering free energy differences between chair conformers. We suggest a modification to the gromos 45a4 parameter set which improves considerably the agreement of simulation results with theoretical and experimental estimates of puckering free energies. We also report on the experimental measurement of altrose conformers populations by means of NMR spectroscopy, which show good agreement with the predictions of current theoretical models

    Modeling effects of L-type ca(2+) current and na(+)-ca(2+) exchanger on ca(2+) trigger flux in rabbit myocytes with realistic T-tubule geometries.

    Get PDF
    The transverse tubular system of rabbit ventricular myocytes consists of cell membrane invaginations (t-tubules) that are essential for efficient cardiac excitation-contraction coupling. In this study, we investigate how t-tubule micro-anatomy, L-type Ca(2+) channel (LCC) clustering, and allosteric activation of Na(+)/Ca(2+) exchanger by L-type Ca(2+) current affects intracellular Ca(2+) dynamics. Our model includes a realistic 3D geometry of a single t-tubule and its surrounding half-sarcomeres for rabbit ventricular myocytes. The effects of spatially distributed membrane ion-transporters (LCC, Na(+)/Ca(2+) exchanger, sarcolemmal Ca(2+) pump, and sarcolemmal Ca(2+) leak), and stationary and mobile Ca(2+) buffers (troponin C, ATP, calmodulin, and Fluo-3) are also considered. We used a coupled reaction-diffusion system to describe the spatio-temporal concentration profiles of free and buffered intracellular Ca(2+). We obtained parameters from voltage-clamp protocols of L-type Ca(2+) current and line-scan recordings of Ca(2+) concentration profiles in rabbit cells, in which the sarcoplasmic reticulum is disabled. Our model results agree with experimental measurements of global Ca(2+) transient in myocytes loaded with 50ā€‰Ī¼M Fluo-3. We found that local Ca(2+) concentrations within the cytosol and sub-sarcolemma, as well as the local trigger fluxes of Ca(2+) crossing the cell membrane, are sensitive to details of t-tubule micro-structure and membrane Ca(2+) flux distribution. The model additionally predicts that local Ca(2+) trigger fluxes are at least threefold to eightfold higher than the whole-cell Ca(2+) trigger flux. We found also that the activation of allosteric Ca(2+)-binding sites on the Na(+)/Ca(2+) exchanger could provide a mechanism for regulating global and local Ca(2+) trigger fluxes in vivo. Our studies indicate that improved structural and functional models could improve our understanding of the contributions of L-type and Na(+)/Ca(2+) exchanger fluxes to intracellular Ca(2+) dynamics

    The Elastic Modulus of Nano-Sized Zinc Determined by Laser Ultrasonic Method

    Get PDF
    The nano ā€” sized materials are the advanced materials developed in the eighties[1]and being called nanocrystalline materials, ultra ā€” fine grained materials or nanophase materials. Because there are a lot of interfaces within the nano ā€” scaled materials, the volume fraction occupied by the interface is comparable with that of particles. The particle size effect and disordering effect of interface exist in the materials. They are referred to haveā€œgaslikeā€ structure. So the nano ā€” sized materials have a number of advantages excelling to the traditional materials properties. Many new phenomena have been discovered from the investigations of their optical and electric properties. However few works are related to their mechanical and ultrasonic properties

    Chemical characteristics of air from different source regions during the second Pacific Exploratory Mission in the Tropics (PEM-Tropics B)

    Get PDF
    Ten-day backward trajectories are used to determine the origins of air parcels arriving at locations of airborne DC-8 chemical measurements during NASA's second Pacific Exploratory Mission in the Tropics B that was conducted during February-April 1999. Chemical data at sites where the trajectories had a common geographical origin and transport history are grouped together, and statistical measures of chemical characteristics are computed. Temporal changes in potential temperature are used to determine whether trajectories experienced a significant convective influence during the 10-day period. Trajectories describing the aged marine Southern Hemispheric category remain over the South Pacific Ocean during the 10-day period, and their corresponding chemical signature indicates very clean air. The category aged marine air in the Northern Hemisphere is found to be somewhat dirtier. Subdividing its trajectories based on the direction from which the air had traveled is found to be important in explaining the various chemical signatures. Similarly, long-range northern hemispheric trajectories passing over Asia are subdivided depending on whether they had followed a mostly zonal path, had originated near the Indian Ocean, or had originated near Central or South America and subsequently experienced a stratospheric influence. Results show that the chemical signatures of these subcategories are different from each other. The chemical signature of the southern hemispheric long-range transport category apparently exhibits the effects of pollution from Australia, southern Africa, and South America. Parcels originating over Central and northern South America are found to contain the strongest pollution signature of all categories, due to biomass burning and other sources. The convective category exhibits enhanced values of nitrogen species, probably due to emissions from lightning associated with the convection. Values of various species, including peroxides and acids, confirm that parcels were influenced by the removal of soluble gas and particle species due to precipitation. Finally, current results are compared with those from the first PEM-Tropics mission that was conducted in the same region during the southern hemispheric dry season (August-October 1996) when extensive biomass burning occurred. Results show that air samples during PEM-Tropics B are considerably cleaner than those of its dry season counterpart. Copyright 2001 by the American Geophysical Union

    The production and persistence of Ī£RONO2 in the Mexico City plume

    Get PDF
    Alkyl and multifunctional nitrates (RONO2, Ī£ANs) have been observed to be a significant fraction of NOy in a number of different chemical regimes. Their formation is an important free radical chain termination step ending production of ozone and possibly affecting formation of secondary organic aerosol. Ī£ANs also represent a potentially large, unmeasured contribution to OH reactivity and are a major pathway for the removal of nitrogen oxides from the atmosphere. Numerous studies have investigated the role of nitrate formation from biogenic compounds and in the remote atmosphere. Less attention has been paid to the role Ī£ANs may play in the complex mixtures of hydrocarbons typical of urban settings. Measurements of total alkyl and multifunctional nitrates, NO2, total peroxy nitrates (Ī£PNs), HNO3 and a representative suite of hydrocarbons were obtained from the NASA DC-8 aircraft during spring of 2006 in and around Mexico City and the Gulf of Mexico. Ī£ANs were observed to be 10ā€“20% of NOy in the Mexico City plume and to increase in importance with increased photochemical age. We describe three conclusions: (1) Correlations of Ī£ANs with odd-oxygen (Ox) indicate a stronger role for Ī£ANs in the photochemistry of Mexico City than is expected based on currently accepted photochemical mechanisms, (2) Ī£AN formation suppresses peak ozone production rates by as much as 40% in the near-field of Mexico City and (3) Ī£ANs play a significant role in the export of NOy from Mexico City to the Gulf Region
    • ā€¦
    corecore