4 research outputs found

    Imaging for assessment of cancer treatment response to immune checkpoint inhibitors can be complementary in identifying hypophysitis

    Get PDF
    IntroductionHypophysitis is reported in 8.5%–14% of patients receiving combination immune checkpoint inhibition (cICI) but can be a diagnostic challenge. This study aimed to assess the role of routine diagnostic imaging performed during therapeutic monitoring of combination anti-CTLA-4/anti-PD-1 treatment in the identification of hypophysitis and the relationship of imaging findings to clinical diagnostic criteria.MethodsThis retrospective cohort study identified patients treated with cICI between January 2016 and January 2019 at a quaternary melanoma service. Medical records were reviewed to identify patients with a documented diagnosis of hypophysitis based on clinical criteria. Available structural brain imaging with magnetic resonance imaging (MRI) or computed tomography (CT) of the brain and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography with computed tomography (FDG-PET/CT) were assessed retrospectively. The main radiological outcome measures were a relative change in pituitary size or FDG uptake temporally attributed to cICI.ResultsThere were 162 patients (median age 60 years, 30% female) included. A total of 100 and 134 had serial CT/MRI of the brain and FDG-PET/CT, respectively. There were 31 patients who had a documented diagnosis of hypophysitis and an additional 20 who had isolated pituitary imaging findings. The pituitary gland enlargement was mild, and the largest absolute gland size was 13 mm, with a relative increase of 7 mm from baseline. There were no cases of optic chiasm compression. Pituitary enlargement and increased FDG uptake were universally transient. High-dose glucocorticoid treatment for concurrent irAEs prevented assessment of the pituitary–adrenal axis in 90% of patients with isolated imaging findings.ConclusionCareful review of changes in pituitary characteristics on imaging performed for assessment of therapeutic response to iICI may lead to increased identification and more prompt management of cICI-induced hypophysitis

    Case report: hypoglycemia due to a novel activating glucokinase variant in an adult – a molecular approach

    Get PDF
    We present a case of an obese 22-year-old man with activating GCK variant who had neonatal hypoglycemia, re-emerging with hypoglycemia later in life. We investigated him for asymptomatic hypoglycemia with a family history of hypoglycemia. Genetic testing yielded a novel GCK missense class 3 variant that was subsequently found in his mother, sister and nephew and reclassified as a class 4 likely pathogenic variant. Glucokinase enables phosphorylation of glucose, the rate-limiting step of glycolysis in the liver and pancreatic β cells. It plays a crucial role in the regulation of insulin secretion. Inactivating variants in GCK cause hyperglycemia and activating variants cause hypoglycemia. Spleen-preserving distal pancreatectomy revealed diffuse hyperplastic islets, nuclear pleomorphism and periductular islets. Glucose stimulated insulin secretion revealed increased insulin secretion in response to glucose. Cytoplasmic calcium, which triggers exocytosis of insulin-containing granules, revealed normal basal but increased glucose-stimulated level. Unbiased gene expression analysis using 10X single cell sequencing revealed upregulated INS and CKB genes and downregulated DLK1 and NPY genes in β-cells. Further studies are required to see if alteration in expression of these genes plays a role in the metabolic and histological phenotype associated with glucokinase pathogenic variant. There were more large islets in the patient’s pancreas than in control subjects but there was no difference in the proportion of β cells in the islets. His hypoglycemia was persistent after pancreatectomy, was refractory to diazoxide and improved with pasireotide. This case highlights the variable phenotype of GCK mutations. In-depth molecular analyses in the islets have revealed possible mechanisms for hyperplastic islets and insulin hypersecretion
    corecore