137 research outputs found
Surgical site infection after caesarean section. Space for post-discharge surveillance improvements and reliable comparisons
Surgical site infections (SSI) after caesarean section (CS) represent a substantial health system concern. Surveying SSI has been associated with a reduction in SSI incidence. We report the findings of three (2008, 2011 and 2013) regional active SSI surveillances after CS in community hospital of the Latium region determining the incidence of SSI. Each CS was surveyed for SSI occurrence by trained staff up to 30 post-operative days, and association of SSI with relevant characteristics was assessed using binomial logistic regression. A total of 3,685 CS were included in the study. A complete 30 day post-operation follow-up was achieved in over 94% of procedures. Overall 145 SSI were observed (3.9% cumulative incidence) of which 131 (90.3%) were superficial and 14 (9.7%) complex (deep or organ/space) SSI; overall 129 SSI (of which 89.9% superficial) were diagnosed post-discharge. Only higher NNIS score was significantly associated with SSI occurrence in the regression analysis. Our work provides the first regional data on CS-associated SSI incidence, highlighting the need for a post-discharge surveillance which should assure 30 days post-operation to not miss data on complex SSI, as well as being less labour intensive
Further characterization of agmatine binding to mitochondrial membranes: involvement of imidazoline I2 receptor.
Agmatine, a divalent diamine with two positive charges at physiological pH, is transported into the matrix of liver mitochondria by an energy-dependent mechanism, the driving force of which is the electrical membrane potential. Its binding to mitochondrial membranes is studied by applying a thermodynamic treatment of ligand-receptor interactions on the analyses of Scatchard and Hill. The presence of two mono-coordinated binding sites S(1) and S(2), with a negative influence of S(2) on S(1), has been demonstrated. The calculated binding energy is characteristic for weak interactions. S(1) exhibits a lower binding capacity and higher binding affinity both of about two orders of magnitude than S(2). Experiments with idazoxan, a ligand of the mitochondrial imidazoline receptor I(2), demonstrate that S(1) site is localized on this receptor while S(2) is localized on the transport system. S(1) would act as a sensor of exogenous agmatine concentration, thus modulating the transport of the amine by its binding to S(2)
The geometry of the magnetic field in the central molecular zone measured by PILOT
We present the first far infrared (FIR) dust emission polarization map covering the full extent of Milky Way’s central molecular zone (CMZ). The data, obtained with the PILOT balloon-borne experiment, covers the Galactic center region − 2° < ℓ < 2°, − 4° < b < 3° at a wavelength of 240 μm and an angular resolution of 2.2′. From our measured dust polarization angles, we infer a magnetic field orientation projected onto the plane of the sky (POS) that is remarkably ordered over the full extent of the CMZ, with an average tilt angle of ≃22° clockwise with respect to the Galactic plane. Our results confirm previous claims that the field traced by dust polarized emission is oriented nearly orthogonally to the field traced by GHz radio synchrotron emission in the Galactic center region. The observed field structure is globally compatible with the latest Planck polarization data at 353 and 217 GHz. Upon subtraction of the extended emission in our data, the mean field orientation that we obtain shows good agreement with the mean field orientation measured at higher angular resolution by the JCMT within the 20 and 50 km s−1 molecular clouds. We find no evidence that the magnetic field orientation is related to the 100 pc twisted ring structure within the CMZ. The low polarization fraction in the Galactic center region measured with Planck at 353 GHz combined with a highly ordered projected field orientation is unusual. This feature actually extends to the whole inner Galactic plane. We propose that it could be caused by the increased number of turbulent cells for the long lines of sight towards the inner Galactic plane or to dust properties specific to the inner regions of the Galaxy. Assuming equipartition between magnetic pressure and ram pressure, we obtain magnetic field strength estimates of the order of 1 mG for several CMZ molecular clouds
Pilot optical alignment
PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 μm and 550 μm with an angular resolution of about two arcminutes. The observations performed during the two first flights performed from Timmins, Ontario Canada, and from Alice-springs, Australia, respectively in September 2015 and in April 2017 have demonstrated the good performances of the instrument. Pilot optics is composed of an off axis Gregorian type telescope combined with a refractive re-imager system. All optical elements, except the primary mirror, which is at ambient temperature, are inside a cryostat and cooled down to 3K. The whole optical system is aligned on ground at room temperature using dedicated means and procedures in order to keep the tight requirements on the focus position and ensure the instrument optical performances during the various phases of a flight. We’ll present the optical performances and the firsts results obtained during the two first flight campaigns. The talk describes the system analysis, the alignment methods, and finally the inflight performances
Host Immune Responses to a Viral Immune Modulating Protein: Immunogenicity of Viral Interleukin-10 in Rhesus Cytomegalovirus-Infected Rhesus Macaques
, consistent with a central role for rhcmvIL-10 during acute virus-host interactions. Since cmvIL-10 and rhcmvIL-10 are extremely divergent from the cIL-10 of their respective hosts, vaccine-mediated neutralization of their function could inhibit establishment of viral persistence without inhibition of cIL-10.As a prelude to evaluating cmvIL-10-based vaccines in humans, the rhesus macaque model of HCMV was used to interrogate peripheral and mucosal immune responses to rhcmvIL-10 in RhCMV-infected animals. ELISA were used to detect rhcmvIL-10-binding antibodies in plasma and saliva, and an IL-12-based bioassay was used to quantify plasma antibodies that neutralized rhcmvIL-10 function. rhcmvIL-10 is highly immunogenic during RhCMV infection, stimulating high avidity rhcmvIL-10-binding antibodies in the plasma of all infected animals. Most infected animals also exhibited plasma antibodies that partially neutralized rhcmvIL-10 function but did not cross-neutralize the function of rhesus cIL-10. Notably, minimally detectable rhcmvIL-10-binding antibodies were detected in saliva.This study demonstrates that rhcmvIL-10, as a surrogate for cmvIL-10, is a viable vaccine candidate because (1) it is highly immunogenic during natural RhCMV infection, and (2) neutralizing antibodies to rhcmvIL-10 do not cross-react with rhesus cIL-10. Exceedingly low rhcmvIL-10 antibodies in saliva further suggest that the oral mucosa, which is critical in RhCMV natural history, is associated with suboptimal anti-rhcmvIL-10 antibody responses
Pilot optical alignment
PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 μm (1.2THz) with an angular resolution about two arc-minutes. The observations performed during the first flight in September 2015 at Timmins, Ontario Canada, have demonstrated the optical performances of the instrument
Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale crater, Mars
H₂O, CO₂, SO₂, O₂, H₂, H₂S, HCl, chlorinated hydrocarbons, NO and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H₂O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO₂. Concurrent evolution of O₂ and chlorinated hydrocarbons suggest the presence of oxychlorine phase(s). Sulfides are likely sources for S-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic C sources may be preserved in the mudstone; however, the C source for the chlorinated hydrocarbons is not definitively of martian origin
Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from approximately average Martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved indicating arid, possibly cold, paleoclimates and rapid erosion/deposition. Absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low temperature, circum-neutral pH, rock-dominated aqueous conditions. High spatial resolution analyses of diagenetic features, including concretions, raised ridges and fractures, indicate they are composed of iron- and halogen-rich components, magnesium-iron-chlorine-rich components and hydrated calcium-sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. Geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early
history of Mars
The Petrochemistry of Jake_M: A Martian Mugearite
“Jake_M,” the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the
Curiosity rover, differs substantially in chemical composition from other known martian igneous
rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is
compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and
continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been
produced by extensive fractional crystallization of a primary alkaline or transitional magma at
elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that
alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter
even more fractionated alkaline rocks (for example, phonolites and trachytes)
- …