16 research outputs found

    Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units

    Get PDF
    94noopenPurpose: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). Methods: In this retrospective–prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. Results: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55–69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89–175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil–lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. Conclusion: Daily values or trends over time of parameters associated with acute organ dysfunction, acid–base derangement, coagulation impairment, or systemic inflammation were associated with patient survival.openZanella A.; Florio G.; Antonelli M.; Bellani G.; Berselli A.; Bove T.; Cabrini L.; Carlesso E.; Castelli G.P.; Cecconi M.; Citerio G.; Coloretti I.; Corti D.; Dalla Corte F.; De Robertis E.; Foti G.; Fumagalli R.; Girardis M.; Giudici R.; Guiotto L.; Langer T.; Mirabella L.; Pasero D.; Protti A.; Ranieri M.V.; Rona R.; Scudeller L.; Severgnini P.; Spadaro S.; Stocchetti N.; Vigano M.; Pesenti A.; Grasselli G.; Aspesi M.; Baccanelli F.; Bassi F.; Bet A.; Biagioni E.; Biondo A.; Bonenti C.; Bottino N.; Brazzi L.; Buquicchio I.; Busani S.; Calini A.; Calligaro P.; Cantatore L.P.; Carelli S.; Carsetti A.; Cavallini S.; Cimicchi G.; Coppadoro A.; Dall'Ara L.; Di Gravio V.; Erba M.; Evasi G.; Facchini A.; Fanelli V.; Feliciotti G.; Fusarini C.F.; Ferraro G.; Gagliardi G.; Garberi R.; Gay H.; Giacche L.; Grieco D.; Guzzardella A.; Longhini F.; Manzan A.; Maraggia D.; Milani A.; Mischi A.; Montalto C.; Mormina S.; Noseda V.; Paleari C.; Pedeferri M.; Pezzi A.; Pizzilli G.; Pozzi M.; Properzi P.; Rauseo M.; Russotto V.; Saccarelli L.; Servillo G.; Spano S.; Tagliabue P.; Tonetti T.; Tullo L.; Vetrugno L.; Vivona L.; Volta C.A.; Zambelli V.; Zanoni A.Zanella, A.; Florio, G.; Antonelli, M.; Bellani, G.; Berselli, A.; Bove, T.; Cabrini, L.; Carlesso, E.; Castelli, G. P.; Cecconi, M.; Citerio, G.; Coloretti, I.; Corti, D.; Dalla Corte, F.; De Robertis, E.; Foti, G.; Fumagalli, R.; Girardis, M.; Giudici, R.; Guiotto, L.; Langer, T.; Mirabella, L.; Pasero, D.; Protti, A.; Ranieri, M. V.; Rona, R.; Scudeller, L.; Severgnini, P.; Spadaro, S.; Stocchetti, N.; Vigano, M.; Pesenti, A.; Grasselli, G.; Aspesi, M.; Baccanelli, F.; Bassi, F.; Bet, A.; Biagioni, E.; Biondo, A.; Bonenti, C.; Bottino, N.; Brazzi, L.; Buquicchio, I.; Busani, S.; Calini, A.; Calligaro, P.; Cantatore, L. P.; Carelli, S.; Carsetti, A.; Cavallini, S.; Cimicchi, G.; Coppadoro, A.; Dall'Ara, L.; Di Gravio, V.; Erba, M.; Evasi, G.; Facchini, A.; Fanelli, V.; Feliciotti, G.; Fusarini, C. F.; Ferraro, G.; Gagliardi, G.; Garberi, R.; Gay, H.; Giacche, L.; Grieco, D.; Guzzardella, A.; Longhini, F.; Manzan, A.; Maraggia, D.; Milani, A.; Mischi, A.; Montalto, C.; Mormina, S.; Noseda, V.; Paleari, C.; Pedeferri, M.; Pezzi, A.; Pizzilli, G.; Pozzi, M.; Properzi, P.; Rauseo, M.; Russotto, V.; Saccarelli, L.; Servillo, G.; Spano, S.; Tagliabue, P.; Tonetti, T.; Tullo, L.; Vetrugno, L.; Vivona, L.; Volta, C. A.; Zambelli, V.; Zanoni, A

    Screening and diagnostic breast MRI:how do they impact surgical treatment? Insights from the MIPA study

    Get PDF
    Objectives: To report mastectomy and reoperation rates in women who had breast MRI for screening (S-MRI subgroup) or diagnostic (D-MRI subgroup) purposes, using multivariable analysis for investigating the role of MRI referral/nonreferral and other covariates in driving surgical outcomes. Methods: The MIPA observational study enrolled women aged 18-80 years with newly diagnosed breast cancer destined to have surgery as the primary treatment, in 27 centres worldwide. Mastectomy and reoperation rates were compared using non-parametric tests and multivariable analysis. Results: A total of 5828 patients entered analysis, 2763 (47.4%) did not undergo MRI (noMRI subgroup) and 3065 underwent MRI (52.6%); of the latter, 2441/3065 (79.7%) underwent MRI with preoperative intent (P-MRI subgroup), 510/3065 (16.6%) D-MRI, and 114/3065 S-MRI (3.7%). The reoperation rate was 10.5% for S-MRI, 8.2% for D-MRI, and 8.5% for P-MRI, while it was 11.7% for noMRI (p â‰¤ 0.023 for comparisons with D-MRI and P-MRI). The overall mastectomy rate (first-line mastectomy plus conversions from conserving surgery to mastectomy) was 39.5% for S-MRI, 36.2% for P-MRI, 24.1% for D-MRI, and 18.0% for noMRI. At multivariable analysis, using noMRI as reference, the odds ratios for overall mastectomy were 2.4 (p < 0.001) for S-MRI, 1.0 (p = 0.957) for D-MRI, and 1.9 (p < 0.001) for P-MRI. Conclusions: Patients from the D-MRI subgroup had the lowest overall mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). This analysis offers an insight into how the initial indication for MRI affects the subsequent surgical treatment of breast cancer. Key points: • Of 3065 breast MRI examinations, 79.7% were performed with preoperative intent (P-MRI), 16.6% were diagnostic (D-MRI), and 3.7% were screening (S-MRI) examinations. • The D-MRI subgroup had the lowest mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). • The S-MRI subgroup had the highest mastectomy rate (39.5%) which aligns with higher-than-average risk in this subgroup, with a reoperation rate (10.5%) not significantly different to that of all other subgroups

    Preoperative breast MRI positively impacts surgical outcomes of needle biopsy–diagnosed pure DCIS: a patient-matched analysis from the MIPA study

    Get PDF
    Objectives: To investigate the influence of preoperative breast MRI on mastectomy and reoperation rates in patients with pure ductal carcinoma in situ (DCIS). Methods: The MIPA observational study database (7245 patients) was searched for patients aged 18–80 years with pure unilateral DCIS diagnosed at core needle or vacuum-assisted biopsy (CNB/VAB) and planned for primary surgery. Patients who underwent preoperative MRI (MRI group) were matched (1:1) to those who did not receive MRI (noMRI group) according to 8 confounding covariates that drive referral to MRI (age; hormonal status; familial risk; posterior-to-nipple diameter; BI-RADS category; lesion diameter; lesion presentation; surgical planning at conventional imaging). Surgical outcomes were compared between the matched groups with nonparametric statistics after calculating odds ratios (ORs). Results: Of 1005 women with pure unilateral DCIS at CNB/VAB (507 MRI group, 498 noMRI group), 309 remained in each group after matching. First-line mastectomy rate in the MRI group was 20.1% (62/309 patients, OR 2.03) compared to 11.0% in the noMRI group (34/309 patients, p = 0.003). The reoperation rate was 10.0% in the MRI group (31/309, OR for reoperation 0.40) and 22.0% in the noMRI group (68/309, p < 0.001), with a 2.53 OR of avoiding reoperation in the MRI group. The overall mastectomy rate was 23.3% in the MRI group (72/309, OR 1.40) and 17.8% in the noMRI group (55/309, p = 0.111). Conclusions: Compared to those going directly to surgery, patients with pure DCIS at CNB/VAB who underwent preoperative MRI had a higher OR for first-line mastectomy but a substantially lower OR for reoperation. Clinical relevance statement: When confounding factors behind MRI referral are accounted for in the comparison of patients with CNB/VAB-diagnosed pure unilateral DCIS, preoperative MRI yields a reduction of reoperations that is more than twice as high as the increase in overall mastectomies. Key Points: • Confounding factors cause imbalance when investigating the influence of preoperative MRI on surgical outcomes of pure DCIS. • When patient matching is applied to women with pure unilateral DCIS, reoperation rates are significantly reduced in women who underwent preoperative MRI. • The reduction of reoperations brought about by preoperative MRI is more than double the increase in overall mastectomies

    Screening and diagnostic breast MRI: how do they impact surgical treatment? Insights from the MIPA study

    Get PDF
    Objectives: To report mastectomy and reoperation rates in women who had breast MRI for screening (S-MRI subgroup) or diagnostic (D-MRI subgroup) purposes, using multivariable analysis for investigating the role of MRI referral/nonreferral and other covariates in driving surgical outcomes. Methods: The MIPA observational study enrolled women aged 18–80 years with newly diagnosed breast cancer destined to have surgery as the primary treatment, in 27 centres worldwide. Mastectomy and reoperation rates were compared using non-parametric tests and multivariable analysis. Results: A total of 5828 patients entered analysis, 2763 (47.4%) did not undergo MRI (noMRI subgroup) and 3065 underwent MRI (52.6%); of the latter, 2441/3065 (79.7%) underwent MRI with preoperative intent (P-MRI subgroup), 510/3065 (16.6%) D-MRI, and 114/3065 S-MRI (3.7%). The reoperation rate was 10.5% for S-MRI, 8.2% for D-MRI, and 8.5% for P-MRI, while it was 11.7% for noMRI (p ≤ 0.023 for comparisons with D-MRI and P-MRI). The overall mastectomy rate (first-line mastectomy plus conversions from conserving surgery to mastectomy) was 39.5% for S-MRI, 36.2% for P-MRI, 24.1% for D-MRI, and 18.0% for noMRI. At multivariable analysis, using noMRI as reference, the odds ratios for overall mastectomy were 2.4 (p < 0.001) for S-MRI, 1.0 (p = 0.957) for D-MRI, and 1.9 (p < 0.001) for P-MRI. Conclusions: Patients from the D-MRI subgroup had the lowest overall mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). This analysis offers an insight into how the initial indication for MRI affects the subsequent surgical treatment of breast cancer. Key Points: • Of 3065 breast MRI examinations, 79.7% were performed with preoperative intent (P-MRI), 16.6% were diagnostic (D-MRI), and 3.7% were screening (S-MRI) examinations. • The D-MRI subgroup had the lowest mastectomy rate (24.1%) among MRI subgroups and the lowest reoperation rate (8.2%) together with P-MRI (8.5%). • The S-MRI subgroup had the highest mastectomy rate (39.5%) which aligns with higher-than-average risk in this subgroup, with a reoperation rate (10.5%) not significantly different to that of all other subgroups
    corecore