252 research outputs found

    Electrical System for Bioelectric Impedance using AD5933 Impedance Converter

    Get PDF
    Benchtop lab equipment, such as the HP4194A Precision Impedance Analyzer, offer accuracy and functionality but are often expensive and bulky. Although integrated circuits offer less functionality than benchtop equivalents, they can be a cheaper alternative for smaller applications. In this study, the AD5933 Impedance Converter was investigated as a low-cost option for impedance analysis of the bicep brachii. The AD5933 evaluation board was properly calibrated to measure human muscle by using an equivalent parallel circuit consisting of a 5 nF capacitor and a 1 kOhm resistor. Next, the impedance of the bicep was measured using the AD5933 as the experimental device and the HP4194A as the control device. A 2 volt peak-to- peak signal was generated for a 10 kHz to 100 kHz frequency range and the resulting impedance of the bicep was measured. The AD5933 recorded impedance curves qualitatively and quantitatively similar to those recorded by the HP4194A. Thus, the AD5933 was considered to be a low- cost alternative for impedance analysis in small-scale medical applications

    Dielectric Characterization of Coastal Cartilage Chondrocytes

    Get PDF
    BACKGROUND: Chondrocytes respond to biomechanical and bioelectrochemical stimuli by secreting appropriate extracellular matrix proteins that enable the tissue to withstand the large forces it experiences. Although biomechanical aspects of cartilage are well described, little is known of the bioelectrochemical responses. The focus of this study is to identify bioelectrical characteristics of human costal cartilage cells using dielectric spectroscopy. METHODS: Dielectric spectroscopy allows non-invasive probing of biological cells. An in house computer program is developed to extract dielectric properties of human costal cartilage cells from raw cell suspension impedance data measured by a microfluidic device. The dielectric properties of chondrocytes are compared with other cell types in order to comparatively assess the electrical nature of chondrocytes. RESULTS: The results suggest that electrical cell membrane characteristics of chondrocyte cells are close to cardiomyoblast cells, cells known to possess an array of active ion channels. The blocking effect of the non-specific ion channel blocker gadolinium is tested on chondrocytes with a significant reduction in both membrane capacitance and conductance. CONCLUSIONS: We have utilized a microfluidic chamber to mimic biomechanical events through changes in bioelectrochemistry and described the dielectric properties of chondrocytes to be closer to cells derived from electrically excitably tissues. GENERAL SIGNIFICANCE: The study describes dielectric characterization of human costal chondrocyte cells using physical tools, where results and methodology can be used to identify potential anomalies in bioelectrochemical responses that may lead to cartilage disorders

    Can adding Ephedrine to Admixture of Propofol & Lidocaine Overcome Propofol Associated Hemodynamic Changes and Injection Pain?

    Get PDF
    Purpose: There are numerous studies researching ways to alleviate propofol injection pain. In this study, we evaluated and compared the use of propofol-lidocaine admixture vs propofol-lidocaine combined with ephedrine, on vascular pain and hemodynamic changes associated propofol. Methods: This double-blinded, prospective, randomised study was performed on 100 patients with ASA I-II who were divided into two group. The first received admixture consisting of 20 mg of lidocaine and propofol 1% 20 ml (Group L), and the other received admixture consisting of 20 mcg ephedrine, 20 mg lidocaine and propofol 1% 20 ml (Group LE). Baseline and after induction heart rate, mean arterial pressure and rate pressure product (RPP) were recorded per minute. Vascular pain were evaluated with verbal rating scale. Results: Data of 40 patients in group L and 39 patients in Group LE were evaluated in the study. The incidence of pain in group L was 90%, it was 38.4% for Group LE. Mild pain was observed significantly more in Group L when compared to Group LE (p<0.05). Average blood pressure and RPP immediately after induction and 1 min after intubation were significantly higher in group LE compared to group L (p<0.05). Heart rate was higher in Group LE immediately after induction and at initially 4 minutes after intubation. Conclusion: Our study has demonstrated significant decrease in rate of vascular pain and increased hemodynamic stability in patients receiving 20 mg ephedrine added to 20 ml % 1 propofol and 20 mg lidocaine admixture when compared to those who only received the lidocaine-propofol admixtur

    Biological Compatibility of Electromanipulation Media

    Get PDF

    Generative discriminative models for multivariate inference and statistical mapping in medical imaging

    Full text link
    This paper presents a general framework for obtaining interpretable multivariate discriminative models that allow efficient statistical inference for neuroimage analysis. The framework, termed generative discriminative machine (GDM), augments discriminative models with a generative regularization term. We demonstrate that the proposed formulation can be optimized in closed form and in dual space, allowing efficient computation for high dimensional neuroimaging datasets. Furthermore, we provide an analytic estimation of the null distribution of the model parameters, which enables efficient statistical inference and p-value computation without the need for permutation testing. We compared the proposed method with both purely generative and discriminative learning methods in two large structural magnetic resonance imaging (sMRI) datasets of Alzheimer's disease (AD) (n=415) and Schizophrenia (n=853). Using the AD dataset, we demonstrated the ability of GDM to robustly handle confounding variations. Using Schizophrenia dataset, we demonstrated the ability of GDM to handle multi-site studies. Taken together, the results underline the potential of the proposed approach for neuroimaging analyses.Comment: To appear in MICCAI 2018 proceeding

    Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion

    Get PDF
    The alignment of brain imaging data for functional neuroimaging studies is challenging due to the discrepancy between correspondence of morphology, and equivalence of functional role. In this paper we map functional activation areas across individuals by a multi-atlas label fusion algorithm in a functional space. We learn the manifold of resting-state fMRI signals in each individual, and perform manifold alignment in an embedding space. We then transfer activation predictions from a source population to a target subject via multi-atlas label fusion. The cost function is derived from the aligned manifolds, so that the resulting correspondences are derived based on the similarity of intrinsic connectivity architecture. Experiments show that the resulting label fusion predicts activation evoked by various experiment conditions with higher accuracy than relying on morphological alignment. Interestingly, the distribution of this gain is distributed heterogeneously across the cortex, and across tasks. This offers insights into the relationship between intrinsic connectivity, morphology and task activation. Practically, the mechanism can serve as prior, and provides an avenue to infer task-related activation in individuals for whom only resting data is available. Keywords: Functional Connectivity, Cortical Surface, Task Activation, Target Subject, Intrinsic ConnectivityCongressionally Directed Medical Research Programs (U.S.) (Grant PT100120)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (R01HD067312)Neuroimaging Analysis Center (U.S.) (P41EB015902)Oesterreichische Nationalbank (14812)Oesterreichische Nationalbank (15929)Seventh Framework Programme (European Commission) (FP7 2012-PIEF-GA-33003

    Probing Nanoparticle Interactions in Cell Culture Media

    Get PDF
    Nanoparticle research is often performed in vitro with little emphasis on the potential role of cell culture medium. In this study, gold nanoparticle interactions with cell culture medium and two cancer cell lines (human T-cell leukemia Jurkat and human pancreatic carcinoma PANC1) were investigated. Gold nanoparticles of 10, 25, 50, and 100 nm in diameter at fixed mass concentration were tested. Size distributions and zeta potentials of gold nanoparticles suspended in deionized (DI) water and Dulbecco\u27s Modified Eagle\u27s Media (DMEM) supplemented with fetal calf serum (FCS) were measured using dynamic light scattering (DLS) technique. In DI water, particle size distributions exhibited peaks around their nominal diameters. However, the gold nanoparticles suspended in DMEM supplemented with FCS formed complexes around 100 nm, regardless of their nominal sizes. The DLS and UV-vis spectroscopy results indicate gold nanoparticle agglomeration in DMEM that is not supplemented by FCS. The zeta potential results indicate that protein rich FCS increases the dispersion quality of gold nanoparticle suspensions through steric effects. Cellular uptake of 25 and 50 nm gold nanoparticles by Jurkat and PANC1 cell lines were investigated using inductively coupled plasma-mass spectroscopy. The intracellular gold level of PANC1 cells was higher than that of Jurkat cells, where 50 nm particles enter cells at faster rates than the 25 nm particles

    Quantum uniqueness

    Full text link
    In the classical world one can construct two identical systems which have identical behavior and give identical measurement results. We show this to be impossible in the quantum domain. We prove that after the same quantum measurement two different quantum systems cannot yield always identical results, provided the possible measurement results belong to a non orthogonal set. This is interpreted as quantum uniqueness - a quantum feature which has no classical analog. Its tight relation with objective randomness of quantum measurements is discussed.Comment: Presented at 4th Feynman festival, June 22-26, 2009, in Olomouc, Czech Republic

    Bayesian model reveals latent atrophy factors with dissociable cognitive trajectories in Alzheimer’s disease

    Get PDF
    We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer’s disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid–positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.United States. National Institutes of Health (1K25EB013649-01)United States. National Institutes of Health (1R21AG050122-01A1)United States. National Institutes of Health (P01AG036694)United States. National Institutes of Health (F32AG044054

    Microfluidic Impedance Spectroscopy as a Tool for Quantitative Biology and Biotechnology

    Get PDF
    A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction. This number is about 1000 folds lower than the capacity of conventional fixtures. A T-cell leukemia cell line Jurkat is tested using the microfluidic device. Measurements of deionized water and salt solutions are utilized to determine parasitic effects and geometric capacitance of the device. Physical models, including Maxwell-Wagner mixture and double shell models, are used to derive quantities for sub-cellular units. Clausius-Mossotti factor of Jurkat cells is extracted from the impedance spectrum. Effects of cellular heterogeneity are discussed and parameterized. Jurkat cells are also tested with a time domain reflectometry system for verification of the microfluidic device. Results indicate good agreement of values obtained with both techniques. The device can be used as a unique cell diagnostic tool to yield information on sub-cellular units. (C) 2012 American Institute of Physics
    • …
    corecore