257 research outputs found

    Pharmacological Or Genetic Targeting Of Transient Receptor Potential (TRP) Channels Can Disrupt The Planarian Escape Response

    Get PDF
    In response to noxious stimuli, planarians cease their typical ciliary gliding and exhibit an oscillatory type of locomotion called scrunching. We have previously characterized the biomechanics of scrunching and shown that it is induced by specific stimuli, such as amputation, noxious heat, and extreme pH. Because these specific inducers are known to activate Transient Receptor Potential (TRP) channels in other systems, we hypothesized that TRP channels control scrunching. We found that chemicals known to activate TRPA1 (allyl isothiocyanate (AITC) and hydrogen peroxide) and TRPV (capsaicin and anandamide) in other systems induce scrunching in the planarian species Dugesia japonica and, except for anandamide, in Schmidtea mediterranea. To confirm that these responses were specific to either TRPA1 or TRPV, respectively, we tried to block scrunching using selective TRPA1 or TRPV antagonists and RNA interference (RNAi) mediated knockdown. Unexpectedly, co-treatment with a mammalian TRPA1 antagonist, HC-030031, enhanced AITC-induced scrunching by decreasing the latency time, suggesting an agonistic relationship in planarians. We further confirmed that TRPA1 in both planarian species is necessary for AITC-induced scrunching using RNAi. Conversely, while co-treatment of a mammalian TRPV antagonist, SB-366791, also enhanced capsaicin-induced reactions in D. japonica, combined knockdown of two previously identified D. japonica TRPV genes (DjTRPVa and DjTRPVb) did not inhibit capsaicin-induced scrunching. RNAi of DjTRPVa/DjTRPVb attenuated scrunching induced by the endocannabinoid and TRPV agonist, anandamide. Overall, our results show that although scrunching induction can involve different initial pathways for sensing stimuli, this behavior’s signature dynamical features are independent of the inducer, implying that scrunching is a stereotypical planarian escape behavior in response to various noxious stimuli that converge on a single downstream pathway. Understanding which aspects of nociception are conserved or not across different organisms can provide insight into the underlying regulatory mechanisms to better understand pain sensation

    Nanoparticle-labeled stem cells: a novel therapeutic vehicle

    Get PDF
    Nanotechnology has been described as a general purpose technology. It has already generated a range of inventions and innovations. Development of nanotechnology will provide clinical medicine with a range of new diagnostic and therapeutic opportunities such as medical imaging, medical diagnosis, drug delivery, and cancer detection and management. Nanoparticles such as manganese, polystyrene, silica, titanium oxide, gold, silver, carbon, quantum dots, and iron oxide have received enormous attention in the creation of new types of analytical tools for biotechnology and life sciences. Labeling of stem cells with nanoparticles overcame the problems in homing and fixing stem cells to their desired site and guiding extension of stem cells to specific directions. Although the biologic effects of some nanoparticles have already been assessed, information on toxicity and possible mechanisms of various particle types remains inadequate. The aim of this review is to give an overview of the mechanisms of internalization and distribution of nanoparticles inside stem cells, as well as the influence of different types of nanoparticles on stem cell viability, proliferation, differentiation, and cytotoxicity, and to assess the role of nanoparticles in tracking the fate of stem cells used in tissue regeneration

    Intelligent forecasting temperature measurements of solar PV cells using modified recurrent neural network

    Get PDF
    For microgrids to operate optimally and minimize the effects of uncertainty, anticipating solar PV measurements is essential. For residential and commercial microgrids that use solar PV, the predicting of solar energy over a short period is crucial for managing grid-connected PVeffectively. Therefore, this work develops a Recurrent Neural Network (RNN) for forecasting temperature measurements as time series records, where a combination of long short-term memory (LSTM) architecture with RNN is used to process input measurements by updating the RNN state and winding over time degrees. Data from the entire prior time steps is stored in the RNN state. A dataset of temperature waveform measurements is used, which includes 2000 unnaturally produced signals of three channels with varying length. An LSTM neural network can be used to expect future values of a time series or sequence utilizing data from earlier time steps as input. Training of a regression LSTM neural network through the output of a sequence is performed, where the goals are the training sequence with records shifting one-time step, for training theLSTM neural architecture with time series forecasting. In other words, the weights of the LSTM neural structure learn to predict the following time step values of the input sequence at every time step. By considering the past forecasts as inputs, the closed-loop prediction forecasts the next time steps of sequences. The model makes the forecast without using the true data. The cross-entropy loss serves as the loss function. It is found that the mean RMSE overall test observations were about 0.5080 which promises to make better predictions from learning the temporal context of input sequence

    Bioactive compounds from Acokanthera oblongifolia

    Get PDF
    One cardiotonic glycoside, three triterpenes and one steroidal glycoside were isolated from Acokanthera oblongifolia fruits (pericarp) growing in Libya. Their structures were investigated by extensive application of IR, MS, 1DNMR and 2DNMR spectroscopy. The isolated compounds have evidenced in-vitro cytotoxicity on selected human cell lines (A-549, H-1299) when compared to doxorubicin. Keywords: Cardenolide; Acokanthera oblongifolia; antitumor activity; lung carcinoma cell line (A-549, H-1299)

    Obtenção de híbridos de melão adaptados as condições da região Nordeste.

    Get PDF
    bitstream/CNPAT-2010/11937/1/Pa-042.pd

    Melhoramento populacional do meloeiro para cultivo na RegiĂŁo Nordeste.

    Get PDF
    Este trabalho objetiva desenvolver e melhorar geneticamente populacoes de melao para os tipos de frutos rendilhado e amarelo, e adapta-las ao cultivo nas condicoes do Nordeste.bitstream/CNPAT-2010/5408/1/Pa-043.pd

    Inhibitive effect of some phosphonate derivatives on the corrosion of carbon steel in 2 M H3PO4

    Get PDF
    Corrosion inhibition performance of some phosphonate derivatives, namely, dodecylphosphonic acid (YM1),  sodium methyl dodecylphosphonate (YM2) and methyl hydrogen dodecylphosphonate (YM3)  on carbon steel in 2 M H3PO4 solution was investigated by means of weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. These compounds inhibit the corrosion rate even at very low concentrations and the order of increasing inhibition efficiency was correlated with the modification of the molecular structure of the inhibitors. Polarization curves indicated that these compounds acted primarily as mixed-type inhibitors. The adsorption of these compounds on carbon steel surface has been found to obey Langmuir’s adsorption isotherm. E% values obtained from weight-loss and electrochemical methods were in good agreement. size:12.0pt;line-height:200%;font-family:"Times New Roman","serif"; color:black'>.

    A novel method to optimize autologous adipose tissue recovery with extracellular matrix preservation

    Get PDF
    This work aims to characterize a new method to recover low-manipulated human adipose tissue, enriched with adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medicine applications. Lipoaspirated fat collected from patients was processed through Lipocell, a Class II-a medical device for dialysis of adipose tissue, by varying filter sizes and washing solutions. ATD-MSC yield was measured with flow cytometry after stromal vascular fraction (SVF) isolation in fresh and cultured samples. Purification from oil and blood was measured after centrifugation with spectrophotometer analysis. Extracellular matrix preservation was assessed through hematoxylin and eosin (H&E) staining and biochemical assay for total collagen, type-2 collagen, and glycosaminoglycans (GAGs) quantification. Flow cytometry showed a two-fold increase of ATD-MSC yield in treated samples in comparison with untreated lipoaspirate; no differences where reported when varying filter size. The association of dialysis and washing thoroughly removed blood and oil from samples. Tissue architecture and extracellular matrix integrity were unaltered after Lipocell processing. Dialysis procedure associated with Ringer’s lactate preserves the proliferation ability of ATD-MSCs in cell culture. The characterization of the product showed that Lipocell is an efficient method for purifying the tissue from undesired byproducts and preserving ATD-MSC vitality and extracellular matrix (ECM) integrity, resulting in a promising tool for regenerative medicine applications

    A novel method to optimize autologous adipose tissue recovery with extracellular matrix preservation

    Get PDF
    This work aims to characterize a new method to recover low-manipulated human adipose tissue, enriched with adipose tissue-derived mesenchymal stem cells (ATD-MSCs) for autologous use in regenerative medicine applications. Lipoaspirated fat collected from patients was processed through Lipocell, a Class II-a medical device for dialysis of adipose tissue, by varying filter sizes and washing solutions. ATD-MSC yield was measured with flow cytometry after stromal vascular fraction (SVF) isolation in fresh and cultured samples. Purification from oil and blood was measured after centrifugationwith spectrophotometer analysis. Extracellularmatrix preservationwas assessed through hematoxylin and eosin (H&E) staining and biochemical assay for total collagen, type-2 collagen, and glycosaminoglycans (GAGs) quantification. Flow cytometry showed a two-fold increase of ATD-MSC yield in treated samples in comparisonwith untreated lipoaspirate; no differenceswhere reportedwhen varying filter size. The association of dialysis and washing thoroughly removed blood and oil from samples. Tissue architecture and extracellular matrix integrity were unaltered after Lipocell processing. Dialysis procedure associated with Ringer's lactate preserves the proliferation ability of ATD-MSCs in cell culture. The characterization of the product showed that Lipocell is an efficient method for purifying the tissue from undesired byproducts and preserving ATD-MSC vitality and extracellular matrix (ECM) integrity, resulting in a promising tool for regenerative medicine applications
    • …
    corecore