139 research outputs found

    Universality of Low-Energy Scattering in 2+1 Dimensions: The Non Symmetric Case

    Full text link
    For a very large class of potentials, V(x)V(\vec{x}), xR2\vec{x}\in R^2, we prove the universality of the low energy scattering amplitude, f(k,k)f(\vec{k}', \vec{k}). The result is f=π2{1/logk)+O(1/(logk)2)f=\sqrt{\frac{\pi}{2}}\{1/log k)+O(1/(log k)^2). The only exceptions occur if VV happens to have a zero energy bound state. Our new result includes as a special subclass the case of rotationally symmetric potentials, V(x)V(|\vec{x}|).Comment: 65 pages, Latex, significant changes, new sections and appendice

    Holocene variations in Lake Titicaca water level and their implications for sociopolitical developments in the central Andes

    Get PDF
    Holocene climate in the high tropical Andes was characterized by both gradual and abrupt changes, which disrupted the hydrological cycle and impacted landscapes and societies. High-resolution paleoenvironmental records are essential to contextualize archaeological data and to evaluate the sociopolitical response of ancient societies to environmental variability. Middle-to-Late Holocene water levels in Lake Titicaca were reevaluated through a transfer function model based on measurements of organic carbon stable isotopes, combined with high-resolution profiles of other geochemical variables and paleoshoreline indicators. Our reconstruction indicates that following a prolonged low stand during the Middle Holocene (4000 to 2400 BCE), lake level rose rapidly ~15 m by 1800 BCE, and then increased another 3 to 6 m in a series of steps, attaining the highest values after ~1600 CE. The largest lake-level increases coincided with major sociopolitical changes reported by archaeologists. In particular, at the end of the Formative Period (500 CE), a major lake-level rise inundated large shoreline areas and forced populations to migrate to higher elevation, likely contributing to the emergence of the Tiwanaku culture

    Evaluation of drug administration errors in a teaching hospital

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medication errors can occur at any of the three steps of the medication use process: prescribing, dispensing and administration. We aimed to determine the incidence, type and clinical importance of drug administration errors and to identify risk factors.</p> <p>Methods</p> <p>Prospective study based on disguised observation technique in four wards in a teaching hospital in Paris, France (800 beds). A pharmacist accompanied nurses and witnessed the preparation and administration of drugs to all patients during the three drug rounds on each of six days per ward. Main outcomes were number, type and clinical importance of errors and associated risk factors. Drug administration error rate was calculated with and without wrong time errors. Relationship between the occurrence of errors and potential risk factors were investigated using logistic regression models with random effects.</p> <p>Results</p> <p>Twenty-eight nurses caring for 108 patients were observed. Among 1501 opportunities for error, 415 administrations (430 errors) with one or more errors were detected (27.6%). There were 312 wrong time errors, ten simultaneously with another type of error, resulting in an error rate without wrong time error of 7.5% (113/1501). The most frequently administered drugs were the cardiovascular drugs (425/1501, 28.3%). The highest risks of error in a drug administration were for dermatological drugs. No potentially life-threatening errors were witnessed and 6% of errors were classified as having a serious or significant impact on patients (mainly omission). In multivariate analysis, the occurrence of errors was associated with drug administration route, drug classification (ATC) and the number of patient under the nurse's care.</p> <p>Conclusion</p> <p>Medication administration errors are frequent. The identification of its determinants helps to undertake designed interventions.</p

    Chronology of prescribing error during the hospital stay and prediction of pharmacist's alerts overriding: a prospective analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug prescribing errors are frequent in the hospital setting and pharmacists play an important role in detection of these errors. The objectives of this study are (1) to describe the drug prescribing errors rate during the patient's stay, (2) to find which characteristics for a prescribing error are the most predictive of their reproduction the next day despite pharmacist's alert (<it>i.e</it>. override the alert).</p> <p>Methods</p> <p>We prospectively collected all medication order lines and prescribing errors during 18 days in 7 medical wards' using computerized physician order entry. We described and modelled the errors rate according to the chronology of hospital stay. We performed a classification and regression tree analysis to find which characteristics of alerts were predictive of their overriding (<it>i.e</it>. prescribing error repeated).</p> <p>Results</p> <p>12 533 order lines were reviewed, 117 errors (errors rate 0.9%) were observed and 51% of these errors occurred on the first day of the hospital stay. The risk of a prescribing error decreased over time. 52% of the alerts were overridden (<it>i.e </it>error uncorrected by prescribers on the following day. Drug omissions were the most frequently taken into account by prescribers. The classification and regression tree analysis showed that overriding pharmacist's alerts is first related to the ward of the prescriber and then to either Anatomical Therapeutic Chemical class of the drug or the type of error.</p> <p>Conclusions</p> <p>Since 51% of prescribing errors occurred on the first day of stay, pharmacist should concentrate his analysis of drug prescriptions on this day. The difference of overriding behavior between wards and according drug Anatomical Therapeutic Chemical class or type of error could also guide the validation tasks and programming of electronic alerts.</p

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe
    corecore