2,047 research outputs found
Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis
The aim of this thesis is to develop automated methods for the analysis of the
spatial patterns, and the functional behaviour of endothelial cells, viewed under
microscopy, with applications to the understanding of atherosclerosis.
Initially, a radial search approach to segmentation was attempted in order to
trace the cell and nuclei boundaries using a maximum likelihood algorithm; it
was found inadequate to detect the weak cell boundaries present in the available
data. A parametric cell shape model was then introduced to fit an equivalent
ellipse to the cell boundary by matching phase-invariant orientation fields of the
image and a candidate cell shape. This approach succeeded on good quality
images, but failed on images with weak cell boundaries. Finally, a support
vector machines based method, relying on a rich set of visual features, and a
small but high quality training dataset, was found to work well on large numbers
of cells even in the presence of strong intensity variations and imaging noise.
Using the segmentation results, several standard shear-stress dependent parameters
of cell morphology were studied, and evidence for similar behaviour
in some cell shape parameters was obtained in in-vivo cells and their nuclei.
Nuclear and cell orientations around immature and mature aortas were broadly
similar, suggesting that the pattern of flow direction near the wall stayed approximately
constant with age. The relation was less strong for the cell and
nuclear length-to-width ratios.
Two novel shape analysis approaches were attempted to find other properties
of cell shape which could be used to annotate or characterise patterns, since a
wide variability in cell and nuclear shapes was observed which did not appear
to fit the standard parameterisations. Although no firm conclusions can yet be
drawn, the work lays the foundation for future studies of cell morphology.
To draw inferences about patterns in the functional response of cells to flow,
which may play a role in the progression of disease, single-cell analysis was performed
using calcium sensitive florescence probes. Calcium transient rates were
found to change with flow, but more importantly, local patterns of synchronisation
in multi-cellular groups were discernable and appear to change with flow.
The patterns suggest a new functional mechanism in flow-mediation of cell-cell
calcium signalling
Stability of Accelerated Expansion in Nonlinear Electrodynamics
This paper is devoted to study the phase space analysis of isotropic and
homogenous universe model by taking a noninteracting mixture of electromagnetic
and viscous radiating fluids whose viscous pressure satisfies a nonlinear
version of the Israel-Stewart transport equation. We establish an autonomous
system of equations by introducing normalized dimensionless variables. In order
to analyze stability of the system, we find corresponding critical points for
different values of the parameters. We also evaluate power-law scale factor
whose behavior indicates different phases of the universe model. It is
concluded that bulk viscosity as well as electromagnetic field enhances the
stability of accelerated expansion of the isotropic and homogeneous universe
model.Comment: 17 pages, 5 figures, accepted for publication in EPJ
Peak to average power ratio reduction in NC–OFDM systems
Non contiguous orthogonal frequency division multiplexing (NC-OFDM) is an efficient and adaptable multicarrier modulation scheme to be used in cognitive radio communications. However like OFDM, NC-OFDM also suffers from the main drawback of high peak to average power ratio (PAPR). In this paper PAPR has been reduced by employing three different trigonometric transforms. Discrete cosine transform (DCT), discrete sine transform (DST) and fractional fourier transform (FRFT) has been combined with conventional selected level mapping (SLM) technique to reduce the PAPR of both OFDM and NC-OFDM based systems. The method combines all the transforms with SLM in different ways. Transforms DCT, DST and FRFT have been applied before the SLM block or inside the SLM block before IFFT. Simulation results show the comparative analysis of all the transforms using SLM in case of both OFDM and NC-OFDM based systems
- …