4,643 research outputs found

    The NorduGrid architecture and tools

    Full text link
    The NorduGrid project designed a Grid architecture with the primary goal to meet the requirements of production tasks of the LHC experiments. While it is meant to be a rather generic Grid system, it puts emphasis on batch processing suitable for problems encountered in High Energy Physics. The NorduGrid architecture implementation uses the \globus{} as the foundation for various components, developed by the project. While introducing new services, the NorduGrid does not modify the Globus tools, such that the two can eventually co-exist. The NorduGrid topology is decentralized, avoiding a single point of failure. The NorduGrid architecture is thus a light-weight, non-invasive and dynamic one, while robust and scalable, capable of meeting most challenging tasks of High Energy Physics.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 9 pages,LaTeX, 4 figures. PSN MOAT00

    Atlas Data-Challenge 1 on NorduGrid

    Full text link
    The first LHC application ever to be executed in a computational Grid environment is the so-called ATLAS Data-Challenge 1, more specifically, the part assigned to the Scandinavian members of the ATLAS Collaboration. Taking advantage of the NorduGrid testbed and tools, physicists from Denmark, Norway and Sweden were able to participate in the overall exercise starting in July 2002 and continuing through the rest of 2002 and the first part of 2003 using solely the NorduGrid environment. This allowed to distribute input data over a wide area, and rely on the NorduGrid resource discovery mechanism to find an optimal cluster for job submission. During the whole Data-Challenge 1, more than 2 TB of input data was processed and more than 2.5 TB of output data was produced by more than 4750 Grid jobs.Comment: Talk from the 2003 Computing in High Energy Physics and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, 3 ps figure

    The domino effect and integrated probabilistic approaches for risk analysis

    Get PDF
    International audienceThe paper develops a probabilistic approach in order to deal with domino effects that may occur in industrial facilities : an explosion or accident may generate various sets of projectiles that may impact other existing facilities (tanks under high-pressure, etc) and may generate other sets of projectiles and so on. Three main parts are considered : 1- Source term : for the first set of generated projectiles, probabilistic distributions are considered for the number, masses, velocities, departure angles, geometrical form, dimensions, and constitutive materials properties. The authors have collected existing models from the literature. 2- Target term : for the set of impacted targets, probabilistic distributions are considered for the number of impacting projectiles, velocities, incidence angles and energy at impact, constitutive materials properties, dimensions of the impacted targets, and projectiles penetration depths into the targets. In this paper, new models for the impact are proposed to calculate the penetration depth after impact : case of cylindrical rods impacting rectangular plates, both are metal made. The theoretical results are compared to the experimental data (4 data sets) collected from the literature with the following features : projectiles mass ranging from 0.1g up to 250 kg, projectiles velocity ranging from 10 m/s up to 2100 m/s, projectiles diameters ranging from 1.5 mm up to 90 mm, target strength ranging from 300 MPa up to 1400 MPa and incidence angles ranging from 0 degree up to 70 degrees. 3- Domino effect term : evaluation of the risks of second set of explosions that may take place in the impacted components. Monte Carlo simulations are used in order to calculate the different probabilities : probability of impact, distribution of the penetration depth and probability of domino effect

    Effects of neutrino oscillations and neutrino magnetic moments on elastic neutrino-electron scattering

    Full text link
    We consider elastic antineutrino-electron scattering taking into account possible effects of neutrino masses and mixing and of neutrino magnetic moments and electric dipole moments. Having in mind antineutrinos produced in a nuclear reactor we compute, in particular, the weak-electromagnetic interference terms which are linear in the magnetic (electric dipole) moments and also in the neutrino masses. We show that these terms are, however, suppressed compared to the pure weak and electromagnetic cross section. We also comment upon the possibility of using the electromagnetic cross section to investigate neutrino oscillations.Comment: 12 pages, REVTEX file, no figures, submitted to Phys.Rev.

    Current Fluctuations of the One Dimensional Symmetric Simple Exclusion Process with Step Initial Condition

    Full text link
    For the symmetric simple exclusion process on an infinite line, we calculate exactly the fluctuations of the integrated current QtQ_t during time tt through the origin when, in the initial condition, the sites are occupied with density ρa\rho_a on the negative axis and with density ρb\rho_b on the positive axis. All the cumulants of QtQ_t grow like t\sqrt{t}. In the range where QttQ_t \sim \sqrt{t}, the decay exp[Qt3/t]\exp [-Q_t^3/t] of the distribution of QtQ_t is non-Gaussian. Our results are obtained using the Bethe ansatz and several identities recently derived by Tracy and Widom for exclusion processes on the infinite line.Comment: 2 figure

    Mesoscopic Analysis of Structure and Strength of Dislocation Junctions in FCC Metals

    Full text link
    We develop a finite element based dislocation dynamics model to simulate the structure and strength of dislocation junctions in FCC crystals. The model is based on anisotropic elasticity theory supplemented by the explicit inclusion of the separation of perfect dislocations into partial dislocations bounding a stacking fault. We demonstrate that the model reproduces in precise detail the structure of the Lomer-Cottrell lock already obtained from atomistic simulations. In light of this success, we also examine the strength of junctions culminating in a stress-strength diagram which is the locus of points in stress space corresponding to dissolution of the junction.Comment: 9 Pages + 4 Figure

    Structure and Strength of Dislocation Junctions: An Atomic Level Analysis

    Full text link
    The quasicontinuum method is used to simulate three-dimensional Lomer-Cottrell junctions both in the absence and in the presence of an applied stress. The simulations show that this type of junction is destroyed by an unzipping mechanism in which the dislocations that form the junction are gradually pulled apart along the junction segment. The calculated critical stress needed for breaking the junction is comparable to that predicted by line tension models. The simulations also demonstrate a strong influence of the initial dislocation line directions on the breaking mechanism, an effect that is neglected in the macroscopic treatment of the hardening effect of junctions.Comment: 4 pages, 3 figure

    Silicon carbide absorption features: dust formation in the outflows of extreme carbon stars

    Full text link
    Infrared carbon stars without visible counterparts are generally known as extreme carbon stars. We have selected a subset of these stars with absorption features in the 10-13 μ\mum range, which has been tentatively attributed to silicon carbide (SiC). We add three new objects meeting these criterion to the seven previously known, bringing our total sample to ten sources. We also present the result of radiative transfer modeling for these stars, comparing these results to those of previous studies. In order to constrain model parameters, we use published mass-loss rates, expansion velocities and theoretical dust condensation models to determine the dust condensation temperature. These show that the inner dust temperatures of the dust shells for these sources are significantly higher than previously assumed. This also implies that the dominant dust species should be graphite instead of amorphous carbon. In combination with the higher condensation temperature we show that this results in a much higher acceleration of the dust grains than would be expected from previous work. Our model results suggest that the very optically thick stage of evolution does not coincide with the timescales for the superwind, but rather, that this is a very short-lived phase. Additionally, we compare model and observational parameters in an attempt to find any correlations. Finally, we show that the spectrum of one source, IRAS 17534-3030, strongly implies that the 10-13 μ\mum feature is due to a solid state rather than a molecular species.Comment: 13 Figure

    Open and Hidden Charm Production in 920 GeV Proton-Nucleus Collisions

    Full text link
    The HERA-B collaboration has studied the production of charmonium and open charm states in collisions of 920 GeV protons with wire targets of different materials. The acceptance of the HERA-B spectrometer covers negative values of xF up to xF=-0.3 and a broad range in transverse momentum from 0.0 to 4.8 GeV/c. The studies presented in this paper include J/psi differential distributions and the suppression of J/psi production in nuclear media. Furthermore, production cross sections and cross section ratios for open charm mesons are discussed.Comment: 5 pages, 9 figures, to be published in the proceedings of the 6th International Conference on Hyperons, Charm & Beauty Hadrons (BEACH04), Chicago, IL, June 27 - July 3, 200

    Measurement of the forward-backward asymmetries for charm- and bottom-quark pair productions at <s><\sqrt{s}>=58GeV with electron tagging

    Full text link
    We have measured, with electron tagging, the forward-backward asymmetries of charm- and bottom-quark pair productions at =58.01GeV, based on 23,783 hadronic events selected from a data sample of 197pb1^{-1} taken with the TOPAZ detector at TRISTAN. The measured forward-backward asymmetries are AFBc=0.49±0.20(stat.)±0.08(sys.)A_{FB}^c = -0.49 \pm 0.20(stat.) \pm 0.08 (sys.) and AFBb=0.64±0.35(stat.)±0.13(sys.)A_{FB}^b = -0.64 \pm 0.35(stat.) \pm 0.13 (sys.), which are consistent with the standard model predictions.Comment: 19 pages, Latex format (article), 5 figures included. to be published in Phys. Lett.
    corecore