14 research outputs found

    Machine learning polysomnographically-derived electroencephalography biomarkers predictive of epworth sleepiness scale

    No full text
    Abstract Excessive daytime sleepiness (EDS) causes difficulty in concentrating and continuous fatigue during the day. In the clinical setting, the assessment and diagnosis of EDS rely mostly on subjective questionnaires and verbal reports, which compromises the reliability of clinical diagnosis and the ability to robustly discern candidacy for available therapies and track treatment response. In this study, we used a computational pipeline for the automated, rapid, high-throughput, and objective analysis of previously collected encephalography (EEG) data to identify surrogate biomarkers for EDS, thereby defining the quantitative EEG changes in individuals with high Epworth Sleepiness Scale (ESS) (n = 31), compared to a group of individuals with low ESS (n = 41) at the Cleveland Clinic. The epochs of EEG analyzed were extracted from a large overnight polysomnogram registry during the most proximate period of wakefulness. Signal processing of EEG showed significantly different EEG features in the low ESS group compared to high ESS, including enhanced power in the alpha and beta bands and attenuation in the delta and theta bands. Our machine learning (ML) algorithms trained on the binary classification of high vs. low ESS reached an accuracy of 80.2%, precision of 79.2%, recall of 73.8% and specificity of 85.3%. Moreover, we ruled out the effects of confounding clinical variables by evaluating the statistical contribution of these variables on our ML models. These results indicate that EEG data contain information in the form of rhythmic activity that could be leveraged for the quantitative assessment of EDS using ML

    Time-dynamic pulse modulation of spinal cord stimulation reduces mechanical hypersensitivity and spontaneous pain in rats

    No full text
    Enhancing the efficacy of spinal cord stimulation (SCS) is needed to alleviate the burden of chronic pain and dependence on opioids. Present SCS therapies are characterized by the delivery of constant stimulation in the form of trains of tonic pulses (TPs). We tested the hypothesis that modulated SCS using novel time-dynamic pulses (TDPs) leads to improved analgesia and compared the effects of SCS using conventional TPs and a collection of TDPs in a rat model of neuropathic pain according to a longitudinal, double-blind, and crossover design. We tested the effects of the following SCS patterns on paw withdrawal threshold and resting state EEG theta power as a biomarker of spontaneous pain: Tonic (conventional), amplitude modulation, pulse width modulation, sinusoidal rate modulation, and stochastic rate modulation. Results demonstrated that under the parameter settings tested in this study, all tested patterns except pulse width modulation, significantly reversed mechanical hypersensitivity, with stochastic rate modulation achieving the highest efficacy, followed by the sinusoidal rate modulation. The anti-nociceptive effects of sinusoidal rate modulation on EEG outlasted SCS duration on the behavioral and EEG levels. These results suggest that TDP modulation may improve clinical outcomes by reducing pain intensity and possibly improving the sensory experience

    Time-dynamic pulse modulation of spinal cord stimulation reduces mechanical hypersensitivity and spontaneous pain in rats

    No full text
    Enhancing the efficacy of spinal cord stimulation (SCS) is needed to alleviate the burden of chronic pain and dependence on opioids. Present SCS therapies are characterized by the delivery of constant stimulation in the form of trains of tonic pulses (TPs). We tested the hypothesis that modulated SCS using novel time-dynamic pulses (TDPs) leads to improved analgesia and compared the effects of SCS using conventional TPs and a collection of TDPs in a rat model of neuropathic pain according to a longitudinal, double-blind, and crossover design. We tested the effects of the following SCS patterns on paw withdrawal threshold and resting state EEG theta power as a biomarker of spontaneous pain: Tonic (conventional), amplitude modulation, pulse width modulation, sinusoidal rate modulation, and stochastic rate modulation. Results demonstrated that under the parameter settings tested in this study, all tested patterns except pulse width modulation, significantly reversed mechanical hypersensitivity, with stochastic rate modulation achieving the highest efficacy, followed by the sinusoidal rate modulation. The anti-nociceptive effects of sinusoidal rate modulation on EEG outlasted SCS duration on the behavioral and EEG levels. These results suggest that TDP modulation may improve clinical outcomes by reducing pain intensity and possibly improving the sensory experience
    corecore