11,030 research outputs found

    A constitutive model for an overlay coating

    Get PDF
    Coatings are frequently applied to gas turbine blades and vanes to provide protection against oxidation and corrosion. The results of an experimental and analytical study to develop a constitutive model for an overlay coating is presented. Specimens were machined from a hot isostatically pressed billet of PWA 286. The tests consisted of isothermal stress relaxation cycles with monotonically increasing maximum strain and were conducted at various temperatures. The results were used to calculate the constants for various constitutive models, including the classical, the Walker isotropic, a simplified Walker, and Stowell models. A computerized regression analysis was used to calculate model constants from the data. The best fit was obtained for the Walker model, with the simplified Walker and classical models close behind

    Performance evaluation of a second-generation elastic loop mobility system

    Get PDF
    Tests were conducted to evaluate the mobility performance of a second-generation Elastic Loop Mobility System (ELMS II). Performance on level test lanes and slopes of lunar soil simulant (LSS) and obstacle-surmounting and crevasse-crossing capabilities were investigated. In addition, internal losses and contact pressure distributions were evaluated. To evaluate the soft-soil performance, two basic soil conditions were tested: loose (LSS1) and dense (LSS5). These conditions embrace the spectrum of soil strengths tested during recent studies for NASA related to the mobility performance of the LRV. Data indicated that for the tested range of the various performance parameters, performance was independent of unit load (contact pressure) and ELMS II drum angular velocity, but was influenced by soil strength and ELMS pitch mode. Power requirements were smaller at a given system output for dense soil than for loose soil. The total system output in terms of pull developed or slope-climbing capability was larger for the ELMS II operating in restrained-pitch mode than in free-pitch mode

    Notched fatigue of single crystal PWA 1480 at turbine attachment temperatures

    Get PDF
    The focus is on the lower temperature, uncoated and notched features of gas turbine blades. Constitutive and fatigue life prediction models applicable to these regions are being developed. Fatigue results are presented which were obtained thus far. Fatigue tests are being conducted on PWA 1480 single crystal material using smooth strain controlled specimens and three different notched specimens. Isothermal fatigue tests were conducted at 1200, 1400, and 1600 F. The bulk of the tests were conducted at 1200 F. The strain controlled tests were conducted at 0.4 percent per second strain rate and the notched tests were cycled at 1.0 cycle per second. A clear orientation dependence is observed in the smooth strain controlled fatigue results. The fatigue lifes of the thin, mild notched specimens agree fairly well with this smooth data when elastic stress range is used as a correlating parameter. Finite element analyses were used to calculate notch stresses. Fatigue testing will continue to further explore the trends observed thus far. Constitutive and life prediction models are being developed

    Life prediction and constitutive models for engine hot section

    Get PDF
    The purpose of this program is to develop life prediction models for coated anisotropic materials used in gas turbine airfoils. In the program, two single crystal alloys and two coatings are being tested. These include PWA 1480, Alloy 185, overlay coating (PWA 286), and aluminide coating (PWA 273). Constitutive models are also being developed for these materials to predict the time independent (plastic) and time dependent (creep) strain histories of the materials in the lab tests and for actual design conditions. This nonlinear material behavior is particularly important for high temperature gas turbine applications and is basic to any life prediction system. Some of the accomplishments of the program are highlighted

    A linearized kinetic theory of spin-1/2 particles in magnetized plasmas

    Full text link
    We have considered linear kinetic theory including the electron spin properties in a magnetized plasma. The starting point is a mean field Vlasov-like equation, derived from a fully quantum mechanical treatment, where effects from the electron spin precession and the magnetic dipole force is taken into account. The general conductivity tensor is derived, including both the free current contribution, as well as the magnetization current associated with the spin contribution. We conclude the paper with an extensive discussion of the quantum-mechanical boundary where we list parameter conditions that must be satisfied for various quantum effects to be influential.Comment: 11 page

    Hadronic Spectral Function and Charm Meson Production

    Get PDF
    At the chiral restoration/deconfinement transition, most hadrons undergo a Mott transition from being bound states in the confined phase to resonances in the deconfined phase. We investigate the consequences of this qualitative change in the hadron spectrum on final state interactions of charmonium in hot and dense matter, and show that the Mott effect for D-mesons leads to a critical enhancement of the J/Psi dissociation rate. Anomalous J/Psi suppression in the NA50 experiment is discussed as well as the role of the Mott effect for the heavy flavor kinetics in future experiments at the LHC. The status of our calculations of hadron-hadron cross sections using the quark interchange and chiral Lagrangian approaches is reviewed, and an Ansatz for a unification of these schemes is given.Comment: 12 pages, 6 figures, Proceedings of the Budapest'02 Workshop on Quark & Hadron Dynamics, Budapest, Hungary, March 3-7, 200

    Dust-acoustic waves and stability in the permeating dusty plasma: II. Power-law distributions

    Full text link
    The dust-acoustic waves and their stability driven by a flowing dusty plasma when it cross through a static (target) dusty plasma (the so-called permeating dusty plasma) are investigated when the components of the dusty plasma obey the power-law q-distributions in nonextensive statistics. The frequency, the growth rate and the stability condition of the dust-acoustic waves are derived under this physical situation, which express the effects of the nonextensivity as well as the flowing dusty plasma velocity on the dust-acoustic waves in this dusty plasma. The numerical results illustrate some new characteristics of the dust-acoustic waves, which are different from those in the permeating dusty plasma when the plasma components are the Maxwellian distribution. In addition, we show that the flowing dusty plasma velocity has a significant effect on the dust-acoustic waves in the permeating dusty plasma with the power-law q-distribution.Comment: 20 pages, 10 figures, 41 reference

    On linear coupling of acoustic and cyclotron waves in plasma flows

    Full text link
    It is found that in magnetized electrostatic plasma flows the velocity shear couples ion-acoustic waves with ion-cyclotron waves and leads, under favorable conditions, to their efficient reciprocal transformations. It is shown that in a two-dimensional setup this coupling has a remarkable feature: it is governed by equations that are exactly similar to the ones describing coupling of sound waves with internal gravity waves [Rogava & Mahajan: Phys. Rev. E vol.55, 1185 (1997)] in neutral fluid flows. Using another noteworthy quantum mechanical analogy we calculate transformation coefficients and give fully analytic, quantitative description of the coupling efficiency for flows with low shearing rates.Comment: 5 pages, no figures. Submitted to "Physics of Plasmas

    Black hole radiation with high frequency dispersion

    Get PDF
    We consider one model of a black hole radiation, in which the equation of motion of a matter field is modified to cut off high frequency modes. The spectrum in the model has already been analytically derived in low frequency range, which has resulted in the Planckian distributin of the Hawking temperature. On the other hand, it has been numerically shown that its spectrum deviates from the thermal one in high frequency range. In this paper, we analytically derive the form of the deviation in the high frequency range. Our result can qualitatively explain the nature of the numerically calculated spectrum. The origin of the deviation is clarified by a simple discussion.Comment: 9 pages, 10 figures, submitted to Phys.Rev.

    Landau Damping in a Turbulent Setting

    Full text link
    To address the problem of Landau damping in kinetic turbulence, the forcing of the linearized Vlasov equation by a stationary random source is considered. It is found that the time-asymptotic density response is dominated by resonant particle interactions that are synchronized with the source. The energy consumption of this response is calculated, implying an effective damping rate, which is the main result of this paper. Evaluating several cases, it is found that the effective damping rate can differ from the Landau damping rate in magnitude and also, remarkably, in sign. A limit is demonstrated in which the density and current become phase-locked, which causes the effective damping to be negligible; this potentially resolves an energy paradox that arises in the application of critical balance to a kinetic turbulence cascade.Comment: Introduction significantly expanded to help contextualize results. Calculations unchange
    corecore