4,864 research outputs found

    Proposal for demonstrating the Hong-Ou-Mandel effect with matter waves

    Get PDF
    The Hong-Ou-Mandel (HOM) effect is a striking demonstration of destructive quantum interference between pairs of indistinguishable bosons, realised so far only with massless photons. Here we propose an experiment which can realise this effect in the matter-wave regime using pair-correlated atoms produced via a collision of two Bose-Einstein condensates and subjected to two laser induced Bragg pulses. We formulate a novel measurement protocol appropriate for the multimode matter-wave field, which---unlike the typical two-mode optical case---bypasses the need for repeated measurements under different displacement settings of the beam-splitter, thus dramatically reducing the number of experimental runs required to map out the interference visibility. The protocol can be utilised in related matter-wave schemes; here we focus on condensate collisions and by simulating the entire experiment we predict a HOM-dip visibility of ~69%. By being larger than 50%, such a visibility highlights strong quantum correlations between the atoms and paves the way for a possible demonstration of a Bell inequality violation with massive particles in a related Rarity-Tapster setup.Comment: Essentially the same version as v2, except in Nature Communications style; for Supplementary Information see the source fil

    2D Raman band splitting in graphene: charge screening and lifting of the K-point Kohn anomaly

    Get PDF
    Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the “inner” and “outer” Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.This work was supported by the United States National Science Foundation (DMR 1411008, DMR 1308659). J.C. thanks the Department of Defence (DoD), Air Force Office of Scientific Research for its support through the National Defence Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. The authors would like to thank Cory Dean and Carlos Forsythe for the graphene encapsulated hBN sample. (DMR 1411008 - United States National Science Foundation; DMR 1308659 - United States National Science Foundation; 32 CFR 168a - Department of Defence (DoD), Air Force Office of Scientific Research through the National Defence Science and Engineering Graduate (NDSEG) Fellowship

    Work placement reports: Student perceptions

    Get PDF
    Engineering students complete work placement reports after being on placement in industry, the aim is to increase work place learning and to increase students understanding about the placement, themselves, career direction and skills obtained. Third and fourth year engineering students perceptions on their report writing experience, academic feedback quality, and the effect of completing work placement reports on their learning and report writing ability, were surveyed. Third year students enjoyed the experience more than fourth year students and perceived greater benefits. Fourth year student opinion was mixed, reflecting greater experience and cynicism. Fourth year students rated feedback from academics higher than the third years, perhaps because their reports were more interesting for the academics. The fourth year students were more cynical on the benefits of reflecting and reviewing what they had learned, and many considered this was not important for being an engineer

    Lattice-corrected strain-induced vector potentials in graphene

    Full text link
    The electronic implications of strain in graphene can be captured at low energies by means of pseudovector potentials which can give rise to pseudomagnetic fields. These strain-induced vector potentials arise from the local perturbation to the electronic hopping amplitudes in a tight-binding framework. Here we complete the standard description of the strain-induced vector potential, which accounts only for the hopping perturbation, with the explicit inclusion of the lattice deformations or, equivalently, the deformation of the Brillouin zone. These corrections are linear in strain and are different at each of the strained, inequivalent Dirac points, and hence are equally necessary to identify the precise magnitude of the vector potential. This effect can be relevant in scenarios of inhomogeneous strain profiles, where electronic motion depends on the amount of overlap among the local Fermi surfaces. In particular, it affects the pseudomagnetic field distribution induced by inhomogeneous strain configurations, and can lead to new opportunities in tailoring the optimal strain fields for certain desired functionalities.Comment: Errata for version

    Exciton mediated one phonon resonant Raman scattering from one-dimensional systems

    Full text link
    We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering cross section from a one-dimensional (1D) system explicitly accounting for excitonic effects. The result should prove useful for analyzing the Raman resonance excitation profile lineshapes for a variety of 1D systems including carbon nanotubes and semiconductor quantum wires. We apply this formalism to a simple 1D model system to illustrate the similarities and differences between the free electron and correlated electron-hole theories.Comment: 10 pages, 6 figure

    Chirality dependence of the radial breathing phonon mode density in single wall carbon nanotubes

    Full text link
    A mass and spring model is used to calculate the phonon mode dispersion for single wall carbon nanotubes (SWNTs) of arbitrary chirality. The calculated dispersions are used to determine the chirality dependence of the radial breathing phonon mode (RBM) density. Van Hove singularities, usually discussed in the context of the single particle electronic excitation spectrum, are found in the RBM density of states with distinct qualitative differences for zig zag, armchair and chiral SWNTs. The influence the phonon mode density has on the two phonon resonant Raman scattering cross-section is discussed.Comment: 6 pages, 2 figures, submitted to Phys. Rev.

    Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics

    Full text link
    We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.Comment: 9 pages, 3 figures, 3 pages supplementary material, 2 supplementary figure
    corecore