120 research outputs found

    Effect of copper, cadmium and Cu.Cd mixture on amino acid content in the poslarvae of penaeid shrimp, Penaeus monodon and P. penicillatus

    Get PDF
    This study document effects of short-term (96h) sublethal levels of copper, cadmium and their mixture on the amino acid composition of postlarvae of the penaeid shrimp, P.monodon and P.penicillatus . All experimental conditions were kept constant, temperature between 25-27•C and salinity 21-22 ppt. The estimated LD50 for Cu was 200 ug/L, for Cd 177.5 ug/L and for Cu.Cd mixture 250ug/L. In P. penicillatus at the same concentration of each metal, there was significant reduction in amino acid content, which was 8.01% higher than the control. Almost similar reduction in some amino acids was observed in P.monodon. At the maximum concentration of 400 ug/L, cadmium caused higher reduction in amino acid composition than did copper. Thus, amino acid composition may be regarded as a sensitive biochemical indicator of Cu and Cd toxicity because of the effect of these metals on protein synthesis, a signal of physiological stress in marine organisms subjected to heavy metal pollution

    How intraguild predation affects the host diversity-disease relationship in a multihost community

    Get PDF
    Broad evidence has shown that host diversity can impede disease invasion and reduce the eventual prevalence, but little is known on how species interactions play in shaping this host diversity-disease relationship. Previous work has illustrated that intraguild predation (IGP), combined with parasite-mediated indirect effects, can have strong influences on parasitic infection. Following this line of thinking, we here examine the role of predatory interactions in the disease transmission within a multihost community. Through varying fractions of IGP in a competitive community, we show that, dependent on the fraction of predatory interactions, species richness can switch from enhancing to inhibiting disease establishment/prevalence. Without IGP interactions, high host species richness can likely weaken the 'dilution effect' and in some cases even enhance the disease establishment (and/or prevalence) due to the existence of alternative sources for infection, whereas IGP can generally heighten the negative diversity-disease relationship due to the reduction of encounter rate between prospective hosts and parasites. Although trait-mediated interactions (captured as the infection-induced changes in predation rate) only weakly affect disease prevalence, density-mediated interactions (captured as the additional infection-induced mortality) can pose a relatively strong influence on disease transmission. Our results thus underline the importance of considering species interactions when investigating the host diversity-disease relationship. (C) 2020 Elsevier Ltd. All rights reserved

    Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria

    Get PDF
    Publisher Copyright: © 2019, The Author(s).Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.Peer reviewe

    The Physics of the B Factories

    Get PDF

    Phylogenetic analyses suggest a hybrid origin of the figs (Moraceae: Ficus) that are endemic to the Ogasawara (Bonin) Islands, Japan

    No full text
    The Ogasawara Islands are oceanic islands and harbor a unique endemic flora. There are three fig species (Ficus boninsimae, F. nishimurae and F. iidaiana) endemic to the Ogasawara Islands, and these species have been considered to be closely related to Ficus erecta, and to have diverged within the islands. However, this hypothesis remains uncertain. To investigate this issue, we assessed the phylogenetic relationships of the Ogasawara figs and their close relatives occurring in Japan, Taiwan and South China based on six plastid genome regions, nuclear ITS region and two nuclear genes. The plastid genome-based tree indicated a close relationship between the Ogasawara figs and F. erecta, whereas some of the nuclear gene-based trees suggested this relationship was not so close. In addition, the phylogenetic analyses of the pollinating wasps associated with these fig species based on the nuclear 28S rRNA and mitochondrial cytB genes suggested that the fig-pollinating wasps of F. erecta are not sister to those of the Ogasawara figs. These results suggest the occurrence of an early hybridization event(s) in the lineage leading to the Ogasawara figs. (C) 2012 Elsevier Inc. All rights reserved

    Heterogeneous oceanic arc volcanic rocks in the South Qilian Accretionary Belt (Qilian Orogen, NW China)

    Get PDF
    Primitive arc magmas in oceanic island arcs are probes of sub-arc magmatic processes and are crucial for understanding oceanic subduction. We report data for an Early Paleozoic oceanic arc volcanic complex in the Lajishan-Yongjing terrane, South Qilian Accretionary Belt (SQAB), Qilian Orogen, including zircon U-Pb dating and Hf-O isotopes, mineral and whole-rock geochemistry, and Sr-Nd isotope compositions. New zircon ages of ∼455-440 Ma constrain the timing of arc volcanism and the subduction of the Qilian Ocean. Based on petrography and bulk-rock composition, five lithological types have been identified, including: (1) ankaramite; (2) high-Mg basaltic andesite; (3) high-Al andesite; (4) boninite; (5) sanukite. The volcanic sequence thus is one of the few island arcs where three types of near-primitive arc rocks including boninite, ankaramite and sanukite have been simultaneously produced. All these rocks have variably enriched Sr-Nd isotopic compositions, positive to slight negative zircon εHf(t) values and elevated zircon δ18O values. Boninites, ankaramites and sanukites are interpreted as contemporary, near-primitive, melts generated from different sources and conditions within an island arc setting. Boninites are characterized by low Ti, REE concentrations and high Cr# chrome spinel, and are interpreted as melts of refractory, Cpx-poor, spinel lherzolite or harzburgite at > 25% partial melting. Anomalous zircon δ18O values of 6.57‰-7.61‰ and Sr-Nd mixing calculations suggest less than 2% incorporation of subducted oceanic sediments into the mantle source of the magmas. The ankaramites are characterized by low SiO2, high MgO (Mg#), Cr, Ni and La/Yb ratios, and have similar isotopic ratios to tectonically adjacent OIB lavas. The ankaramite lavas are likely to have derived from mantle sources similar to those of OIB, i.e., pyroxenite-bearing garnet peridotite enriched in incompatible elements. High-Mg basaltic andesites and high-Al andesites may be derived from parental ankaramite magmas. Sr-Nd-Hf isotopic mixing modeling constrain the amount of silicic melt to ∼1-4% for ankaramite magma. Sanukites are of andesitic-dacitic composition with high Mg#, Cr and Ni, and enriched LILE and high La/Yb ratios. They are interpreted as having been generated by reaction of mantle peridotite with a silicic melt, itself derived from subducted sediments. Enriched Sr-Nd-Hf isotopic compositions constrain the amount of silicic melt to ∼10-15% for sanukite. Large compositional variations among the volcanic rocks from the same arc reflect heterogeneous mantle sources and variable degrees of mantle metasomatism by sediment-derived hydrous fluids or silicic melts, accompanied by secondary AFC processes during magma ascent to the surface

    Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau?

    Get PDF
    Oceanic plateaus with high–Mg rocks in the present-day oceanic crust have attracted much attention for their proposed mantle-plume origins and abnormally high mantle potential temperatures (Tp). However, equivalent rocks in ancient oceanic environments are usually poorly preserved because of deformation and metamorphism. Here we present petrological, geochronological and geochemical data for pillow lavas from Cambrian ophiolites in the Lajishan and Yongjing regions of the South Qilian Accretionary Belt (SQAB), from the southern part of the Qilian Orogen, northern China. Three rock groups can be identified geochemically: (1) sub-alkaline basalts with enriched mid- ocean ridge basalt (E-MORB) affinity; (2) alkaline basalts with oceanic island basalt (OIB) features, probably derived from partial melting of an enriched mantle source; and (3) picrites with MgO (18–22 wt.%). Cr-numbers [Cr# = Cr/(Cr + Al)] of spinels from the picrites suggest 18–21% degree of partial melting at the estimated mantle potential temperature (Tp) of 1489–1600 °C, equivalent to values of Cenozoic Hawaiian picrites (1500–1600 °C). Zircons from one gabbro sample yielded a U–Pb Concordia age of 525 ± 3 Ma, suggesting the oceanic crust formed in the Cambrian. Available evidence suggests that Cambrian mantle plume activity is preserved in the South Qilian Accretionary Belt, and influenced the regional tectonics: “jamming” of the trench by thick oceanic crust explains the emplacement and preservation of the oceanic plateau, and gave rise to the generation of concomitant Ordovician inner-oceanic island arc basalts via re-organisation of the subduction zones in the region
    corecore