13 research outputs found

    Sulindac sulfide inhibits colon cancer cell growth and downregulates specificity protein transcription factors

    Get PDF
    BACKGROUND: Specificity protein (Sp) transcription factors play pivotal roles in maintaining the phenotypes of many cancers. We hypothesized that the antineoplastic effects of sulindac and its metabolites were due, in part, to targeting downregulation of Sp transcription factors. METHODS: The functional effects of sulindac, sulindac sulfone and sulindac sulfide on colon cancer cell proliferation were determined by cell counting. Effects of these compounds on expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes were determined by western blot analysis of whole cell lysates and in transient transfection assays using GC-rich constructs. RESULTS: Sulindac and its metabolites inhibited RKO and SW480 colon cancer cell growth and the order of growth inhibitory potency was sulindac sulfide > > sulindac sulfone > sulindac. Treatment of SW480 and RKO cells with sulindac sulfide downregulated expression of Sp1, Sp3 and Sp4 proteins. Sulindac sulfide also decreased expression of several Sp-regulated genes that are critical for cancer cell survival, proliferation and angiogenesis and these include survivin, bcl-2, epidermal growth factor receptor (EGFR), cyclin D1, p65 subunit of NFκB and vascular endothelial growth factor (VEGF). Sulindac sulfide also induced reactive oxygen species (ROS) and decreased the level of microRNA-27a in colon cancer cells, which resulted in the upregulation of the Sp-repressor ZBTB10 and this resulted in downregulation of Sp proteins. CONCLUSIONS: The results suggest that the cancer chemotherapeutic effects of sulindac in colon cancer cells are due, in part, to its metabolite sulindac sulfide which downregulates Sp transcription factors and Sp-regulated pro-oncogenic gene products

    Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Curcumin inhibits growth of several cancer cell lines, and studies in this laboratory in bladder and pancreatic cancer cells show that curcumin downregulates specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes. In this study, we investigated the anticancer activity of curcumin and several synthetic cyclohexanone and piperidine analogs in colon cancer cells.</p> <p>Methods</p> <p>The effects of curcumin and synthetic analogs on colon cancer cell proliferation and apoptosis were determined using standardized assays. The changes in Sp proteins and Sp-regulated gene products were analysed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a), miR-20a, miR-17-5p and ZBTB10 and ZBTB4 mRNA expression.</p> <p>Results</p> <p>The IC<sub>50</sub> (half-maximal) values for growth inhibition (24 hr) of colon cancer cells by curcumin and synthetic cyclohexanone and piperidine analogs of curcumin varied from 10 μM for curcumin to 0.7 μM for the most active synthetic piperidine analog RL197, which was used along with curcumin as model agents in this study. Curcumin and RL197 inhibited RKO and SW480 colon cancer cell growth and induced apoptosis, and this was accompanied by downregulation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and Sp-regulated genes including the epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), survivin, bcl-2, cyclin D1 and NFκB (p65 and p50). Curcumin and RL197 also induced reactive oxygen species (ROS), and cotreatment with the antioxidant glutathione significantly attenuated curcumin- and RL197-induced growth inhibition and downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes. The mechanism of curcumin-/RL197-induced repression of Sp transcription factors was ROS-dependent and due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of microRNAs (miR)-27a, miR-20a and miR-17-5p that regulate these repressors.</p> <p>Conclusions</p> <p>These results identify a new and highly potent curcumin derivative and demonstrate that in cells where curcumin and RL197 induce ROS, an important underlying mechanism of action involves perturbation of miR-ZBTB10/ZBTB4, resulting in the induction of these repressors which downregulate Sp transcription factors and Sp-regulated genes.</p
    corecore