1,866 research outputs found

    Reflectance measurement of two-dimensional photonic crystal nanocavities with embedded quantum dots

    Get PDF
    The spectra of two-dimensional photonic crystal slab nanocavities with embedded InAs quantum dots are measured by photoluminescence and reflectance. In comparing the spectra taken by these two different methods, consistency with the nanocavities' resonant wavelengths is found. Furthermore, it is shown that the reflectance method can measure both active and passive cavities. Q-factors of nanocavities, whose resonant wavelengths range from 1280 to 1620 nm, are measured by the reflectance method in cross polarization. Experimentally, Q-factors decrease for longer wavelengths and the intensity, reflected by the nanocavities on resonance, becomes minimal around 1370 nm. The trend of the Q-factors is explained by the change of the slab thickness relative to the resonant wavelength, showing a good agreement between theory and experiment. The trend of reflected intensity by the nanocavities on resonance can be understood as effects that originate from the PC slab and the underlying air cladding thickness. In addition to three dimensional finite-difference time-domain calculations, an analytical model is introduced that is able to reproduce the wavelength dependence of the reflected intensity observed in the experiment.Comment: 24 pages, 7 figures, corrected+full versio

    Shielding effectiveness of original and modified building materials

    Get PDF
    This contribution deals with the determination of the shielding effectiveness of building materials used for office, factory and government buildings. Besides the examination of standard materials, measurements were also performed on modified materials, e.g. ferro concrete with enhanced shielding effectiveness due to a changed mixture or structure of the reinforcement. The measurements of original and modified materials were carried out in a fully anechoic room (FAR) according to IEEE 299-1997 from 80 MHz up to 10 GHz

    Finite-temperature hole dynamics in the t-J model: Exact results for high dimensions

    Full text link
    We discuss the dynamics of a single hole in the t-J model at finite temperature, in the limit of large spatial dimensions. The problem is shown to yield a simple and physically transparent solution, that exemplifies the continuous thermal evolution of the underlying string picture from the T=0 string-pinned limit through to the paramagnetic phase.Comment: 6 pages, including 2 figure

    Inference of Temporally Varying Bayesian Networks

    Get PDF
    When analysing gene expression time series data an often overlooked but crucial aspect of the model is that the regulatory network structure may change over time. Whilst some approaches have addressed this problem previously in the literature, many are not well suited to the sequential nature of the data. Here we present a method that allows us to infer regulatory network structures that may vary between time points, utilising a set of hidden states that describe the network structure at a given time point. To model the distribution of the hidden states we have applied the Hierarchical Dirichlet Process Hideen Markov Model, a nonparametric extension of the traditional Hidden Markov Model, that does not require us to fix the number of hidden states in advance. We apply our method to exisiting microarray expression data as well as demonstrating is efficacy on simulated test data

    Local bifurcations in differential equations with state-dependent delay

    Get PDF
    This is the author accepted manuscript. The final version is available from AIP Publishing via the DOI in this record.A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDEJ.S. gratefully acknowledges the financial support of the EPSRC via grants EP/N023544/1 and EP/N014391/1. J.S. has also received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement number 643073
    • 

    corecore