651 research outputs found

    Atoms in double-delta-kicked periodic potentials: Chaos with long-range correlations

    Get PDF
    We report an experimental and theoretical study of the dynamics of cold atoms subjected to pairs of closely spaced pulses in an optical lattice. For all previously studied delta-kicked systems, chaotic classical dynamics shows diffusion with short-time (2- or 3-kick) correlations; here, chaotic diffusion combines with new types of long-ranged global correlations, between all kick pairs, which control transport through trapping regions in phase space. Correlations are studied in the classical regime, but the diffusive behavior observed in experiment depends on the quantum dynamical localization

    Conceptual design of equipment to excavate and transport regolith from the lunar maria

    Get PDF
    NASA hopes to have a manned lunar outpost completed by 2005. In order to establish the base, regolith must be excavated from the lunar surface. Regolith will be used as a source for life-supporting elements and as radiation shielding for the lunar outpost. The design team from the University of Texas at Austin designed excavation and transportation equipment for initial operations of the lunar base. The design team also characterized the elements to be found in the regolith and determined the power required to excavate regolith. The characterization of the soil was based on a literature review of lunar geography. Power requirements for excavation were developed by adapting terrestrial equations for excavation power requirements and adapting them to lunar soil conditions. The design of the excavation and transportation equipment was broken into three functions: loosing, collecting, and transporting. A scarifier was selected to loosen, a bucket was selected to collect, and a load-haul system was selected to transport. The functions are powered by a modular fuel cell powered vehicle that provides power for motion of the equipment

    Quantum chaos with spin-chains in pulsed magnetic fields

    Get PDF
    Recently it was found that the dynamics in a Heisenberg spin-chain subjected to a sequence of periodic pulses from an external, parabolic, magnetic field can have a close correspondence with the quantum kicked rotor (QKR). The QKR is a key paradigm of quantum chaos; it has as its classical limit the well-known Standard Map. It was found that a single spin excitation could be converted into a pair of non-dispersive, counter-propagating spin coherent states equivalent to the accelerator modes of the Standard Map. Here we consider how other types of quantum chaotic systems such as a double-kicked quantum rotor or a quantum rotor with a double-well potential might be realized with spin chains; we discuss the possibilities regarding manipulation of the one-magnon spin waves.Comment: 10 pages, 4 figures. Submitted to PTP special issue for QMC200

    Transient temperature distribution in solid sphere subjected to radiation heat exchange

    Get PDF
    The author believes that numerical analysis is the most feasible approach to calculating the transient temperature distribution in a solid sphere subjected to various surface conditions; heat flow within the sphere is radial. Numerical analysis is employed to arrive at a series of equations for calculating the transient temperature at selected points of a solid sphere. A study is made to determine a method for calculating temperatures with these equations; a computing device is found to be the most practical method for this purpose. The equations for temperatures at internal points of the solid sphere are general. The equations have been adapted for use by the Royal McBee LGP-30 Digital Computer which is located in the Missouri School of Mines Computer Center. Three example problems have been programmed for the computer; the results are included in this paper. This data is graphically displayed in a series of curves depicting temperature as a function of location and time within a solid sphere. In the example problems the author determines that the system is stable and convergent. Stability and convergence have to do with the error involved in the use of numerical analysis --Abstract, page 2

    Classical diffusion in double-delta-kicked particles

    Full text link
    We investigate the classical chaotic diffusion of atoms subjected to {\em pairs} of closely spaced pulses (`kicks) from standing waves of light (the 2δ2\delta-KP). Recent experimental studies with cold atoms implied an underlying classical diffusion of type very different from the well-known paradigm of Hamiltonian chaos, the Standard Map. The kicks in each pair are separated by a small time interval ϵ1\epsilon \ll 1, which together with the kick strength KK, characterizes the transport. Phase space for the 2δ2\delta-KP is partitioned into momentum `cells' partially separated by momentum-trapping regions where diffusion is slow. We present here an analytical derivation of the classical diffusion for a 2δ2\delta-KP including all important correlations which were used to analyze the experimental data. We find a new asymptotic (tt \to \infty) regime of `hindered' diffusion: while for the Standard Map the diffusion rate, for K1K \gg 1, DK2/2[1J2(K)..]D \sim K^2/2[1- J_2(K)..] oscillates about the uncorrelated, rate D0=K2/2D_0 =K^2/2, we find analytically, that the 2δ2\delta-KP can equal, but never diffuses faster than, a random walk rate. We argue this is due to the destruction of the important classical `accelerator modes' of the Standard Map. We analyze the experimental regime 0.1Kϵ10.1\lesssim K\epsilon \lesssim 1, where quantum localisation lengths L0.75L \sim \hbar^{-0.75} are affected by fractal cell boundaries. We find an approximate asymptotic diffusion rate DK3ϵD\propto K^3\epsilon, in correspondence to a DK3D\propto K^3 regime in the Standard Map associated with 'golden-ratio' cantori.Comment: 14 pages, 10 figures, error in equation in appendix correcte

    Evolution of NASA's Near-Earth Tracking and Data Relay Satellite System (TDRSS)

    Get PDF
    NASA's Tracking and Data Relay Satellite System (TDRSS) is now in its 23rd year of operations and its spacecraft fleet includes three second-generation spacecraft launched since the year 2000; a figure illustrates the first generation TDRSS spacecraft. During this time frame the TDRSS has provided communications relay support to a broad range of missions, with emphasis on low-earth-orbiting (LEO) spacecraft that include unmanned science spacecraft (e.g., Hubble Space Telescope), and human spaceflight (Space Shuttle and Space Station). Furthermore, the TDRSS has consistently demonstrated its uniqueness and adaptability in several ways. First, its S- and K-band services, combined with its multi-band/steerable single-access (SA) antennas and ground-based configuration flexibility, have permitted the mission set to expand to unique users such as scientific balloons and launch vehicles. Second, the bent-pipe nature of the system has enabled the introduction of new/improved services via technology insertion and upgrades at each of the ground terminals; a specific example here is the Demand Access Service (DAS), which, for example, is currently providing science-alert support to NASA science missions Third, the bent-pipe nature of the system, combined with the flexible ground-terminal signal processing architecture has permitted the demonstration/vaIidation of new techniques/services/technologies via a real satellite channel; over the past 10+ years these have, for example, included demonstrations/evaluations of emerging modulation/coding techniques. Given NASA's emerging Exploration plans, with missions beginning later this decade and expanding for decades to come, NASA is currently planning the development of a seamless, NASA-wide architecture that must accommodate missions from near-earth to deep space. Near-earth elements include Ground-Network (GN) and Near-Earth Relay (NER) components and both must efficiently and seamlessly support missions that encompass: earth orbit, including dedicated science missions and lunar support/cargo vehicles; earth/moon transit; lunar in-situ operations; and other missions within approximately 2 million km of earth (e.g., at the sun/earth libration points). Given that the NER is an evolution of TDRSS, one element of this NASA-wide architecture development activity is a trade study of future NER architecture candidates. The present paper focuses on trade study aspects associated with the NER, highlights study elements, and provides representative interim results

    Quantum chaos in cold atoms and spin waves: The double kicked rotor

    Get PDF
    The Kicked Rotor is a well studied example of a classical Hamiltonian chaotic system, where the momentum of a particle is altered periodically in time through a series of external impulses or kicks, forming a sinusoidal potential. In the chaotic regime this results in a diffusion mechanism, where the average energy of an ensemble of particles grows linearly in time, including certain corrections to the diffusion rate, arising from correlations between kicks at different times. This system has a quantum analogue, the Quantum Kicked Rotor, which exhibits the phenomenon of dynamical localization (DL), a quantum destructive interference effect, where the average energy increase is halted after a given time, and an asymptotic exponential momentum distribution is obtained. Experiments have been performed using ultracold atoms and standing waves of laser light. This thesis investigates the newly discovered Double Kicked Rotor, where pairs of closely spaced kicks are applied to particles. This results in momentum space being divided into a number of cells in which fast energy absorption occurs, whereas at the cell boundaries, termed momentum trapping regions, particles absorb almost no energy. It is shown that the effect is almost entirely independent of the time interval between the kick pairs. It is further shown that the diffusion mechanism is due to a strong momentum dependence of the kick correlations. Novel global long-range correlations in time are found to control the system behaviour significantly - a very unusual situation for a chaotic system. The Quantum Double Kicked Rotor is also investigated, both in the context of laser pulses applied to cold atoms and magnetic fields applied to Heisenberg spin chains. Trapping in momentum and position space occurs respectively, and DL results in an asymptotic imprint of the asymmetries in momentum or spin distributions. The classical diffusion calculations are used to explain the experimental results. Novel scaling properties are also discussed

    Beyond deficiency:Potential benefits of increased intakesof vitamin K for bone and vascular health

    Get PDF
    Vitamin K is wellknown for its role in the synthesisof a number of blood coagulationfactors.During recent years vitaminK-dependent proteins werediscovered to be of vital importancefor bone and vascular health.Recommendations for dietary vitaminK intake have been made onthe basis of the hepatic requirementsfor the synthesis of bloodcoagulation factors.Accumulatingevidence suggests that the requirementsfor other functions thanblood coagulation may be higher.This paper is the result of a closedworkshop (Paris,November 2002)in which a number of Europeanvitamin K experts reviewed theavailable data and formulated theirstandpoint with respect to recommendeddietary vitamin K intakeand the use of vitamin K-containingsupplements

    NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    Get PDF
    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future need
    corecore