22 research outputs found

    The proteasome inhibitor MG-132 sensitizes PC-3 prostate cancer cells to ionizing radiation by a DNA-PK-independent mechanism

    Get PDF
    BACKGROUND: By modulating the expression levels of specific signal transduction molecules, the 26S proteasome plays a central role in determining cell cycle progression or arrest and cell survival or death in response to stress stimuli, including ionizing radiation. Inhibition of proteasome function by specific drugs results in cell cycle arrest, apoptosis and radiosensitization of many cancer cell lines. This study investigates whether there is also a concomitant increase in cellular radiosensitivity if proteasome inhibition occurs only transiently before radiation. Further, since proteasome inhibition has been shown to activate caspase-3, which is involved in apoptosis, and caspase-3 can cleave DNA-PKcs, which is involved in DNA-double strand repair, the hypothesis was tested that caspase-3 activation was essential for both apoptosis and radiosensitization following proteasome inhibition. METHODS: Prostate carcinoma PC-3 cells were treated with the reversible proteasome inhibitor MG-132. Cell cycle distribution, apoptosis, caspase-3 activity, DNA-PKcs protein levels and DNA-PK activity were monitored. Radiosensitivity was assessed using a clonogenic assay. RESULTS: Inhibition of proteasome function caused cell cycle arrest and apoptosis but this did not involve early activation of caspase-3. Short-time inhibition of proteasome function also caused radiosensitization but this did not involve a decrease in DNA-PKcs protein levels or DNA-PK activity. CONCLUSION: We conclude that caspase-dependent cleavage of DNA-PKcs during apoptosis does not contribute to the radiosensitizing effects of MG-132

    OPTIMAL CONTROL PROBLEM OF SOME DIFFERENTIAL INCLUSION AND APPROXIMATION

    No full text
    In this paper we present the optimal control problem governed by a variational inclusion with the monotone operator and a quadratic costfunctional. We apply standart Galerkin method to the approximation of the problem. After giving some results on the existance of optimal control we shall prove the existance of weak condensation points of a set of solution of approximate problems. Each of these points is a solution of the initial optimization problem. Finally we shall give a simple example using the obtaned results

    Resistance variation of conductive ink applied by the screen printing technique on different substrates

    No full text
    This research study focuses on the application of conductive ink by the screen printing technique to evaluate the potential of creating printed electrodes and to investigate the effect of washing upon electrical resistance and flexibility. Two conductive inks were applied by a conventional screen printing method on four different textile substrates, 100% cotton, 50%/50% cotton/polyester, 100% polyester and 100% polyamide. The inks were also applied on a multifibre fabric. Atmospheric plasma treatment was applied to improve the adhesion to the samples, and the resistance values were compared with those of non-treated samples. The values were measured before and after cleaning and washing tests, which were performed to simulate domestic treatment for garments to predict the behaviour of the inks after normal usage of the fabrics. Comfort properties like stiffness of the fabrics were also evaluated after five and 10 washing cycles. It was observed that PE 825 ink forms a thicker film on the fabric surface, contributing to the loss of flexibility of the textile. However, PE 825 ink also produced the best results in terms of durability and lower values of resistance. Polyamide fabrics lost their conductive property after five washing cycles due to weak bonding between the ink and the fibres, whereas cotton fibres provided the best results.This work is financed by Project“Deus ex Machina”, NORTE-01-0145-FEDER-000026, funded by CCDRN, through Sistema de Apoio à Investigação Cientifica e Tecnológica (Projetos Estruturados I&D&I) of Programa Operacional Regional do Norte, from Portugal 2020 and by Project UID/CTM/00264/2019 of 2C2T –Centro de Ciência e Tecnologia Têxtil, funded by National Founds through FCT/MCTES.Derya Tama thanks FCT for fellowship 2C2T-BPD-08-2017
    corecore