9 research outputs found
DNA Barcoding Identifies Argentine Fishes from Marine and Brackish Waters
DNA barcoding has been advanced as a promising tool to aid species identification and discovery through the use of short, standardized gene targets. Despite extensive taxonomic studies, for a variety of reasons the identification of fishes can be problematic, even for experts. DNA barcoding is proving to be a useful tool in this context. However, its broad application is impeded by the need to construct a comprehensive reference sequence library for all fish species. Here, we make a regional contribution to this grand challenge by calibrating the species discrimination efficiency of barcoding among 125 Argentine fish species, representing nearly one third of the known fauna, and examine the utility of these data to address several key taxonomic uncertainties pertaining to species in this region..This study constitutes a significant contribution to the global barcode reference sequence library for fishes and demonstrates the utility of barcoding for regional species identification. As an independent assessment of alpha taxonomy, barcodes provide robust support for most morphologically based taxon concepts and also highlight key areas of taxonomic uncertainty worthy of reappraisal
Identification of potential essential fish habitats for skates based on fishers' knowledge
Understanding of spatio-temporal patterns of sensitive fish species such as skates (Rajidae) is essential for implementation of conservation measures. With insufficient survey data available for these species in Portuguese Continental waters, this study shows that fishery-dependent data associated with fishers' knowledge can be used to identify potential Essential Fish Habitats (EFH) for seven skate species. Sites with similar geomorphology were associated with the occurrence of juveniles and/or adults of the same group of species. For example, sites deeper than 100 m with soft sediment include predominantly adults of Raja clavata, and are the habitat for egg deposition of this species. Raja undulata and R. microocellata are the more coastal species, preferring sand or gravel habitats, while coastal areas with rocks and sand seabed are potential nursery areas for R. brachyura, R. montagui and R. clavata. The main output of this study is the identification of preferential fishing sites enclosing potential EFH for some species, associated with egg-laying and nursery grounds. The location of these areas will be considered for future seasonal closures, and studies will be conducted to evaluate the biological and socio-economic impacts of such measures. As in the past, fishermen will collaborate in the process of evaluating those impacts, since they have practical and applied knowledge that is extremely valuable for evaluating the advantages and disadvantages of such closures. In conclusion, this study is a first contribution to the understanding and identification of EFH for skate species, associated with nursery and egg deposition sites, with direct application to management