1,306 research outputs found

    Registration of ‘Matterhorn’ Hard White Waxy Winter Wheat

    Get PDF
    ‘Matterhorn’ (Reg. No. CV-1151, PI 687896) hard white winter waxy wheat (Triticum aestivum L.) was developed cooperatively by the USDA-ARS and the Nebraska Agricultural Experiment Station and released in 2018. Matterhorn, a sibling of the hard red waxy cultivar Mattern, has white grain color and waxy (amylose-free) endosperm starch. It was released primarily for its unique end-use quality attributes and for grain yield competitiveness with currently grown Nebraskaadapted cultivars. The waxy starch is conditioned by the presence of three naturally occurring mutations that eliminate production of the enzyme granule-bound starch synthase. Granule-bound starch synthase synthesizes amylose in typical wheats and other cereal crops. Matterhorn (tested as NX04Y2107W) was selected from the heterogeneous red/ white-seeded experimental line NX04Y2107 derived from the cross NW98S061/99Y1442

    Asymmetric gap soliton modes in diatomic lattices with cubic and quartic nonlinearity

    Full text link
    Nonlinear localized excitations in one-dimensional diatomic lattices with cubic and quartic nonlinearity are considered analytically by a quasi-discreteness approach. The criteria for the occurence of asymmetric gap solitons (with vibrating frequency lying in the gap of phonon bands) and small-amplitude, asymmetric intrinsic localized modes (with the vibrating frequency being above all the phonon bands) are obtained explicitly based on the modulational instabilities of corresponding linear lattice plane waves. The expressions of particle displacement for all these nonlinear localized excitations are also given. The result is applied to standard two-body potentials of the Toda, Born-Mayer-Coulomb, Lennard-Jones, and Morse type. The comparison with previous numerical study of the anharmonic gap modes in diatomic lattices for the standard two-body potentials is made and good agreement is found.Comment: 24 pages in Revtex, 2 PS figure

    The Reform of Employee Compensation in China’s Industrial Enterprises

    Get PDF
    Although employee compensation reform in Chinese industrial sector has been discussed in the literature, the real changes in compensation system and pay practices have received insufficient attention and warrant further examination. This paper briefly reviews the pre- and post-reform compensation system, and reports the results of a survey of pay practices in the four major types of industrial enterprises in China. The research findings indicate that the type of enterprise ownership has little influence on general compensation practices, adoption of profit-sharing plans, and subsidy and allowance packages. In general, pay is linked more to individual performance and has become an important incentive to Chinese employees. However, differences are found across the enterprise types with regard to performance-related pay. Current pay practices are positively correlated to overall effectiveness of the enterprise

    Papio baboon species indicative Alu elements

    Get PDF
    © The Author(s) 2017. The genus of Papio (baboon) has six recognized species separated into Northern and Southern clades, each comprised of three species distributed across the African continent. Geographic origin and phenotypic variants such as coat color and body size have commonly been used to identify different species. The existence ofmultiple hybrid zones, both ancient and current, have complicated efforts to characterize the phylogeny of Papio baboons. More recently, mitochondrial DNA (mtDNA) and Y-chromosome genetic markers have been utilized for species identification with particular focus on the hybrid zones. Alu elements accumulate in a random manner and are a novel source of identical by descent variation with known ancestral states for inferring population genetic and phylogenetic relationships. As part of the Baboon Genome Analysis Consortium, we assembled an Alu insertion polymorphism database of nearly 500 Papio-lineage specific insertions representing all six species and performed population structure and phylogenetic analyses. In this study, we have selected a subset of 48 species indicative Alu insertions and demonstrate their utility as genetic systems for the identification of baboon species within Papio. Individual elements from the panel are easy to genotype and can be used in a hierarchical fashion based on the original level of uncertainty. This Alu-48 panel should serve as a valuable tool during the maintenance of pedigree records in captive populations and assist in the forensic identification of fossils and potential hybrids in the wild

    A computational reconstruction of Papio phylogeny using Alu insertion polymorphisms

    Get PDF
    © 2018 The Author(s). Background: Since the completion of the human genome project, the diversity of genome sequencing data produced for non-human primates has increased exponentially. Papio baboons are well-established biological models for studying human biology and evolution. Despite substantial interest in the evolution of Papio, the systematics of these species has been widely debated, and the evolutionary history of Papio diversity is not fully understood. Alu elements are primate-specific transposable elements with a well-documented mutation/insertion mechanism and the capacity for resolving controversial phylogenetic relationships. In this study, we conducted a whole genome analysis of Alu insertion polymorphisms unique to the Papio lineage. To complete these analyses, we created a computational algorithm to identify novel Alu insertions in next-generation sequencing data. Results: We identified 187,379 Alu insertions present in the Papio lineage, yet absent from M. mulatta [Mmul8.0.1]. These elements were characterized using genomic data sequenced from a panel of twelve Papio baboons: two from each of the six extant Papio species. These data were used to construct a whole genome Alu-based phylogeny of Papio baboons. The resulting cladogram fully-resolved relationships within Papio. Conclusions: These data represent the most comprehensive Alu-based phylogenetic reconstruction reported to date. In addition, this study produces the first fully resolved Alu-based phylogeny of Papio baboons

    Predicting disease-associated substitution of a single amino acid by analyzing residue interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid accumulation of data on non-synonymous single nucleotide polymorphisms (nsSNPs, also called SAPs) should allow us to further our understanding of the underlying disease-associated mechanisms. Here, we use complex networks to study the role of an amino acid in both local and global structures and determine the extent to which disease-associated and polymorphic SAPs differ in terms of their interactions to other residues.</p> <p>Results</p> <p>We found that SAPs can be well characterized by network topological features. Mutations are probably disease-associated when they occur at a site with a high centrality value and/or high degree value in a protein structure network. We also discovered that study of the neighboring residues around a mutation site can help to determine whether the mutation is disease-related or not. We compiled a dataset from the Swiss-Prot variant pages and constructed a model to predict disease-associated SAPs based on the random forest algorithm. The values of total accuracy and MCC were 83.0% and 0.64, respectively, as determined by 5-fold cross-validation. With an independent dataset, our model achieved a total accuracy of 80.8% and MCC of 0.59, respectively.</p> <p>Conclusions</p> <p>The satisfactory performance suggests that network topological features can be used as quantification measures to determine the importance of a site on a protein, and this approach can complement existing methods for prediction of disease-associated SAPs. Moreover, the use of this method in SAP studies would help to determine the underlying linkage between SAPs and diseases through extensive investigation of mutual interactions between residues.</p

    Identification of deleterious non-synonymous single nucleotide polymorphisms using sequence-derived information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the number of non-synonymous single nucleotide polymorphisms (nsSNPs), also known as single amino acid polymorphisms (SAPs), increases rapidly, computational methods that can distinguish disease-causing SAPs from neutral SAPs are needed. Many methods have been developed to distinguish disease-causing SAPs based on both structural and sequence features of the mutation point. One limitation of these methods is that they are not applicable to the cases where protein structures are not available. In this study, we explore the feasibility of classifying SAPs into disease-causing and neutral mutations using only information derived from protein sequence.</p> <p>Results</p> <p>We compiled a set of 686 features that were derived from protein sequence. For each feature, the distance between the wild-type residue and mutant-type residue was computed. Then a greedy approach was used to select the features that were useful for the classification of SAPs. 10 features were selected. Using the selected features, a decision tree method can achieve 82.6% overall accuracy with 0.607 Matthews Correlation Coefficient (MCC) in cross-validation. When tested on an independent set that was not seen by the method during the training and feature selection, the decision tree method achieves 82.6% overall accuracy with 0.604 MCC. We also evaluated the proposed method on all SAPs obtained from the Swiss-Prot, the method achieves 0.42 MCC with 73.2% overall accuracy. This method allows users to make reliable predictions when protein structures are not available. Different from previous studies, in which only a small set of features were arbitrarily chosen and considered, here we used an automated method to systematically discover useful features from a large set of features well-annotated in public databases.</p> <p>Conclusion</p> <p>The proposed method is a useful tool for the classification of SAPs, especially, when the structure of the protein is not available.</p

    Bacteriophage biodistribution and infectivity from honeybee to bee larvae using a T7 phage model

    Get PDF
    Bacteriophages (phages) or viruses that specifically infect bacteria have widely been studied as biocontrol agents against animal and plant bacterial diseases. They offer many advantages compared to antibiotics. The American Foulbrood (AFB) is a bacterial disease affecting honeybee larvae caused by Paenibacillus larvae. Phages can be very significant in fighting it mostly due to European restrictions to the use of antibiotics in beekeeping. New phages able to control P. larvae in hives have already been reported with satisfactory results. However, the efficacy and feasibility of administering phages indirectly to larvae through their adult workers only by providing phages in bees feeders has never been evaluated. This strategy is considered herein the most feasible as far as hive management is concerned. This in vivo study investigated the ability of a phage to reach larvae in an infective state after oral administration to honeybees. The screening (by direct PFU count) and quantification (by quantitative PCR) of the phage in bee organs and in larvae after ingestion allowed us to conclude that despite 104 phages reaching larvae only an average of 32 were available to control the spread of the disease. The fast inactivation of many phages in royal jelly could compromise this therapeutic approach. The protection of phages from hive-derived conditions should be thus considered in further developments for AFB treatment.This study was supported by the project APILYSE, PTDC/CVT-EPI/4008/2014 - POCI-01-0145-FEDER-016598, - funded by FEDER through COMPETE 2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by national funds trough FCT - Fundação para a Ciência e a Tecnologia, I.P. The work was also supported by the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004), funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. HR was supported by FCT through the grant SFRH/BD/128859/2017. RC was founded by FCT and FEDER (POCI-010145-FEDER-007274).info:eu-repo/semantics/publishedVersio
    corecore