17 research outputs found

    Sexual Signalling in Propithecus verreauxi: Male “Chest Badge” and Female Mate Choice

    Get PDF
    Communication, an essential prerequisite for sociality, involves the transmission of signals. A signal can be defined as any action or trait produced by one animal, the sender, that produces a change in the behaviour of another animal, the receiver. Secondary sexual signals are often used for mate choice because they may inform on a potential partner's quality. Verreaux's sifaka (Propithecus verreauxi) is characterized by the presence of two different morphs of males (bimorphism), which can show either a stained or clean chest. The chest becomes stained by secretions of the sternal gland during throat marking (rubbing throat and chest on a vertical substrate while smearing the scent deposition). The role of the chest staining in guiding female mate choice was previously hypothesized but never demonstrated probably due to the difficulty of observing sifaka copulations in the wild. Here we report that stained-chested males had a higher throat marking activity than clean-chested males during the mating season, but not during the birth season. We found that females copulated more frequently with stained-chested males than the clean-chested males. Finally, in agreement with the biological market theory, we found that clean-chested males, with a lower scent-releasing potential, offered more grooming to females. This “grooming for sex” tactic was not completely unsuccessful; in fact, half of the clean-chested males copulated with females, even though at low frequency. In conclusion, the chest stain, possibly correlated with different cues targeted by females, could be one of the parameters which help females in selecting mates

    Mating First, Mating More: Biological Market Fluctuation in a Wild Prosimian

    Get PDF
    In biology, economics, and politics, distributive power is the key for understanding asymmetrical relationships and it can be obtained by force (dominance) or trading (leverage). Whenever males cannot use force, they largely depend on females for breeding opportunities and the balance of power tilts in favour of females. Thus, males are expected not only to compete within their sex-class but also to exchange services with the opposite sex. Does this mating market, described for humans and apes, apply also to prosimians, the most ancestral primate group? To answer the question, we studied a scent-oriented and gregarious lemur, Propithecus verreauxi (sifaka), showing female dominance, promiscuous mating, and seasonal breeding. We collected 57 copulations involving 8 males and 4 females in the wild (Berenty Reserve, South Madagascar), and data (all occurrences) on grooming, aggressions, and marking behaviour. We performed the analyses via exact Spearman and matrix correlations. Male mating priority rank correlated with the frequency of male countermarking over female scents but not with the proportion of fights won by males over females. Thus, males competed in an olfactory tournament more than in an arena of aggressive encounters. The copulation frequency correlated neither with the proportion of fights won by males nor with the frequency of male countermarking on female scents. Male-to-female grooming correlated with female-to-male grooming only during premating. Instead, in the mating period male-to-female grooming correlated with the copulation frequency. In short, the biological market underwent seasonal fluctuations, since males bargained grooming for sex in the mating days and grooming for itself in the premating period. Top scent-releasers gained mating priority (they mated first) and top groomers ensured a higher number of renewed copulations (they mated more). In conclusion, males maximize their reproduction probability by adopting a double tactic and by following market fluctuations

    The evolution of fruit colour: phylogeny, abiotic factors and the role of mutualists

    Get PDF
    Abstract The adaptive significance of fruit colour has been investigated for over a century. While colour can fulfil various functions, the most commonly tested hypothesis is that it has evolved to increase fruit visual conspicuousness and thus promote detection and consumption by seed dispersing animals. However, fruit colour is a complex trait which is subjected to various constraints and selection pressures. As a result, the effect of animal selection on fruit colour are often difficult to identify, and several studies have failed to detect it. Here, we employ an integrative approach to examine what drives variation in fruit colour. We quantified the colour of ripe fruit and mature leaves of 97 tropical plant species from three study sites in Madagascar and Uganda. We used phylogenetically controlled models to estimate the roles of phylogeny, abiotic factors, and dispersal mode on fruit colour variation. Our results show that, independent of phylogeny and leaf coloration, mammal dispersed fruits are greener than bird dispersed fruits, while the latter are redder than the former. In addition, fruit colour does not correlate with leaf colour in the visible spectrum, but fruit reflection in the ultraviolet area of the spectrum is strongly correlated with leaf reflectance, emphasizing the role of abiotic factors in determining fruit colour. These results demonstrate that fruit colour is affected by both animal sensory ecology and abiotic factors and highlight the importance of an integrative approach which controls for the relevant confounding factors

    How Variable Is a Primate’s World: Spatial and Temporal Variation in Potential Ecological Drivers of Behaviour ?

    Get PDF
    International audience"The field of primatology has reached the stage where there are sufficient long-term studies and many shorter investigations on the same species at many different locations, in which we are able to appreciate how variable the behaviour of primates can be and how predictable their environment is over space and time. For example, redtail monkeys (Cercopithecus ascanius) exhibit extreme flexibility in diet; i.e. within the same national park, the amount of time they spend eating fruit varies from 36 to 60% of their foraging time, and among populations, time spent eating fruit ranges from 13 to 61%. Similarly, long-term phenological data from the same area encompassing over two decades illustrate that fruit availability can vary among years by as much as eightfold. While data have steadily accumulated on how variable primate behaviour and proposed environmental predictors of behaviour can be, this information has not been used to effectively re-evaluate theory. For example, current primate socioecological theory has derived general frameworks using the average behavioural traits of species or genera, but these new data suggest it is inappropriate to use such averages. Similarly, environments have often been characterized by single studies of 2 years or less, which does not sufficiently account for environmental variation. Here, we present examples of behavioural and ecological variation and consider ways that our field could advance in the future by considering this variation." (source éditeur
    corecore