531 research outputs found
A simple and robust method for connecting small-molecule drugs using gene-expression signatures
Interaction of a drug or chemical with a biological system can result in a
gene-expression profile or signature characteristic of the event. Using a
suitably robust algorithm these signatures can potentially be used to connect
molecules with similar pharmacological or toxicological properties. The
Connectivity Map was a novel concept and innovative tool first introduced by
Lamb et al to connect small molecules, genes, and diseases using genomic
signatures [Lamb et al (2006), Science 313, 1929-1935]. However, the
Connectivity Map had some limitations, particularly there was no effective
safeguard against false connections if the observed connections were considered
on an individual-by-individual basis. Further when several connections to the
same small-molecule compound were viewed as a set, the implicit null hypothesis
tested was not the most relevant one for the discovery of real connections.
Here we propose a simple and robust method for constructing the reference
gene-expression profiles and a new connection scoring scheme, which importantly
allows the valuation of statistical significance of all the connections
observed. We tested the new method with the two example gene-signatures (HDAC
inhibitors and Estrogens) used by Lamb et al and also a new gene signature of
immunosuppressive drugs. Our testing with this new method shows that it
achieves a higher level of specificity and sensitivity than the original
method. For example, our method successfully identified raloxifene and
tamoxifen as having significant anti-estrogen effects, while Lamb et al's
Connectivity Map failed to identify these. With these properties our new method
has potential use in drug development for the recognition of pharmacological
and toxicological properties in new drug candidates.Comment: 8 pages, 2 figures, and 2 tables; supplementary data supplied as a
ZIP fil
Learning curves for pediatric laparoscopy: how many operations are enough? The Amsterdam experience with laparoscopic pyloromyotomy
Few studies on the surgical outcomes of open (OP) versus laparoscopic pyloromyotomy (LP) in the treatment of hypertrophic pyloric stenosis have been published. The question arises as to how many laparoscopic procedures are required for a surgeon to pass the learning curve and which technique is best in terms of postoperative complications. This study aimed to evaluate and quantify the learning curve for the laparoscopic technique at the authors' center. A second goal of this study was to evaluate the pre- and postoperative data of OP versus LP for infantile hypertrophic pyloric stenosis. A retrospective analysis was performed for 229 patients with infantile hypertrophic pyloric stenosis. Between January 2002 and September 2008, 158 infants underwent OP and 71 infants had LP. The median operating time between the OP (33 min) and LP (40 min) groups was significantly different. The median hospital stay after surgery was 3 days for the OP patients and 2 days for the LP patients (p = 0.002). The postoperative complication rates were not significantly different between the OP (21.5%) and LP (21.1%) groups (p = 0.947). Complications were experienced by 31.5% of the first 35 LP patients. This rate decreased to 11.4% during the next 35 LP procedures (p = 0.041). Two perforations and three conversions occurred in the first LP group, compared with one perforation in the second LP group. The number of complications decreased significantly between the first and second groups of the LP patients, with the second group of LP patients quantifying the learning curve. Not only was the complication rate lower in the second LP group, but severe complications also were decreased. This indicates that the learning curve for LP in the current series involved 35 procedure
Caveolin-1 and -2 in airway epithelium: expression and in situ association as detected by FRET-CLSM
BACKGROUND: Caveolae are involved in diverse cellular functions such as signal transduction, cholesterol homeostasis, endo- and transcytosis, and also may serve as entry sites for microorganisms. Hence, their occurrence in epithelium of the airways might be expected but, nonetheless, has not yet been examined. METHODS: Western blotting, real-time quantitative PCR analysis of abraded tracheal epithelium and laser-assisted microdissection combined with subsequent mRNA analysis were used to examine the expression of cav-1 and cav-2, two major caveolar coat proteins, in rat tracheal epithelium. Fluorescence immunohistochemistry was performed to locate caveolae and cav-1 and -2 in the airway epithelium of rats, mice and humans. Electron-microscopic analysis was used for the identification of caveolae. CLSM-FRET analysis determined the interaction of cav-1α and cav-2 in situ. RESULTS: Western blotting and laser-assisted microdissection identified protein and transcripts, respectively, of cav-1 and cav-2 in airway epithelium. Real-time quantitative RT-PCR analysis of abraded tracheal epithelium revealed a higher expression of cav-2 than of cav-1. Immunoreactivities for cav-1 and for cav-2 were co-localized in the cell membrane of the basal cells and basolaterally in the ciliated epithelial cells of large airways of rat and human. However, no labeling for cav-1 or cav-2 was observed in the epithelial cells of small bronchi. Using conventional double-labeling indirect immunofluorescence combined with CLSM-FRET analysis, we detected an association of cav-1α and -2 in epithelial cells. The presence of caveolae was confirmed by electron microscopy. In contrast to human and rat, cav-1-immunoreactivity and caveolae were confined to basal cells in mice. Epithelial caveolae were absent in cav-1-deficient mice, implicating a requirement of this caveolar protein in epithelial caveolae formation. CONCLUSION: These results show that caveolae and caveolins are integral membrane components in basal and ciliated epithelial cells, indicating a crucial role in these cell types. In addition to their physiological role, they may be involved in airway infection
Protective effect of stromal Dickkopf-3 in prostate cancer: opposing roles for TGFBI and ECM-1
Aberrant transforming growth factor–β (TGF-β) signaling is a hallmark of the stromal microenvironment in cancer. Dickkopf-3 (Dkk-3), shown to inhibit TGF-β signaling, is downregulated in prostate cancer and upregulated in the stroma in benign prostatic hyperplasia, but the function of stromal Dkk-3 is unclear. Here we show that DKK3 silencing in WPMY-1 prostate stromal cells increases TGF-β signaling activity and that stromal cellconditioned media inhibit prostate cancer cell invasion in a Dkk-3-dependent manner. DKK3 silencing increased the level of the cell-adhesion regulator TGF-β–induced protein (TGFBI) in stromal and epithelial cell-conditioned media, and recombinant TGFBI increased prostate cancer cell invasion. Reduced expression of Dkk-3 in patient tumors was associated with increased expression of TGFBI. DKK3 silencing reduced the level of extracellular matrix protein-1 (ECM-1) in prostate stromal cell-conditioned media but increased it in epithelial cell-conditioned media, and recombinant ECM-1 inhibited TGFBI-induced prostate cancer cell invasion. Increased ECM1 and DKK3 mRNA expression in prostate tumors was associated with increased relapse-free survival. These observations are consistent with a model in which the loss of Dkk-3 in prostate cancer leads to increased secretion of TGFBI and ECM-1, which have tumor-promoting and tumor-protective roles, respectively. Determining how the balance between the opposing roles of extracellular factors influences prostate carcinogenesis will be key to developing therapies that target the tumor microenvironment
Physics of Neutron Star Crusts
The physics of neutron star crusts is vast, involving many different research
fields, from nuclear and condensed matter physics to general relativity. This
review summarizes the progress, which has been achieved over the last few
years, in modeling neutron star crusts, both at the microscopic and macroscopic
levels. The confrontation of these theoretical models with observations is also
briefly discussed.Comment: 182 pages, published version available at
<http://www.livingreviews.org/lrr-2008-10
Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT)
Comprender los cálculos que tienen lugar en los circuitos cerebrales requiere identificar cómo las neuronas de esos circuitos están conectadas entre sí. Describimos una técnica llamada TRACT (control de transcripción neuronal) basada en la proteólisis intramembrana inducida por ligando para revelar conexiones monosinápticas que surgen de las neuronas de interés marcadas genéticamente. En esta estrategia, las neuronas que expresan un ligando artificial (neuronas "donadoras") se unen y activan un receptor artificial de ingeniería genética en sus parejas sinápticas (neuronas "receptoras"). Tras la unión del ligando-receptor en las sinapsis, el receptor se escinde en su dominio transmembrana y libera un fragmento de proteína que activa la transcripción en las parejas sinápticas. Al usar TRACT en Drosophila, hemos confirmado la conectividad entre las neuronas receptoras olfativas y sus objetivos postsinápticos, y hemos descubierto nuevas conexiones potenciales entre las neuronas en el circuito circadiano. Nuestros resultados demuestran que el método TRACT se puede utilizar para investigar la conectividad de los circuitos neuronales en el cerebro.Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to one another. We describe a technique called TRACT (TRAnsneuronal Control of Transcription) based on ligand-induced intramembrane proteolysis to reveal monosynaptic connections arising from genetically labeled neurons of interest. In this strategy, neurons expressing an artificial ligand (‘donor’ neurons) bind to and activate a genetically-engineered artificial receptor on their synaptic partners (‘receiver’ neurons). Upon ligand-receptor binding at synapses the receptor is cleaved in its transmembrane domain and releases a protein fragment that activates transcription in the synaptic partners. Using TRACT in Drosophila we have confirmed the connectivity between olfactory receptor neurons and their postsynaptic targets, and have discovered potential new connections between neurons in the circadian circuit. Our results demonstrate that the TRACT method can be used to investigate the connectivity of neuronal circuits in the brain.• National Institute of Health (USA). Beca UO 1109147, para Carlos LoispeerReviewe
Simvastatin inhibits TGFβ1-induced fibronectin in human airway fibroblasts
<p>Abstract</p> <p>Background</p> <p>Bronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming growth factor (TGF)-β1 plays a major role in this process. We previously revealed the importance of the mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate mevalonate cascade-associated signaling in TGFβ1-induced fibronectin expression by bronchial fibroblasts from non-asthmatic and asthmatic subjects.</p> <p>Methods</p> <p>We used simvastatin (1-15 μM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10 μM) and farnesyl transferase (FT; FTI-277, 10 μM) were used to determine whether GGT1 and FT contribute to TGFβ1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and mevalonate (1 mM), geranylgeranylpyrophosphate (30 μM) or farnesylpyrophosphate (30 μM).</p> <p>Results</p> <p>Immunoblotting revealed concentration-dependent simvastatin inhibition of TGFβ1 (2.5 ng/ml, 48 h)-induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting fundamental involvement of GGT1 in TGFβ1-induced signaling. Asthmatic fibroblasts exhibited greater TGFβ1-induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced by simvastatin.</p> <p>Conclusions</p> <p>We conclude that TGFβ1-induced fibronectin expression in airway fibroblasts relies on activity of GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent signaling holds promise for treating airway wall fibrosis.</p
- …