14 research outputs found
Imaging high-dimensional spatial entanglement with a camera
The light produced by parametric down-conversion shows strong spatial
entanglement that leads to violations of EPR criteria for separability.
Historically, such studies have been performed by scanning a single-element,
single-photon detector across a detection plane. Here we show that modern
electron-multiplying charge-coupled device cameras can measure correlations in
both position and momentum across a multi-pixel field of view. This capability
allows us to observe entanglement of around 2,500 spatial states and
demonstrate Einstein-Podolsky-Rosen type correlations by more than two orders
of magnitude. More generally, our work shows that cameras can lead to important
new capabilities in quantum optics and quantum information science.Comment: 5 pages, 4 figure