34 research outputs found
Direct targets of the transcription factors ABA-Insensitive(ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors
The plant hormone abscisic acid (ABA) is a key regulator of seed development. In addition to promoting seed maturation, ABA inhibits seed germination and seedling growth. Many components involved in ABA response have been identified, including the transcription factors ABA insensitive (ABI)4 and ABI5. The genes encoding these factors are expressed predominantly in developing and mature seeds, and are positive regulators of ABA mediated inhibition of seed germination and growth. The direct effects of ABI4 and ABI5 in ABA response remain largely undefined. To address this question, plants over-expressing ABI4 or ABI5 were used to allow identification of direct transcriptional targets. Ectopically expressed ABI4 and ABI5 conferred ABA-dependent induction of slightly over 100 genes in 11 day old plants. In addition to effector genes involved in seed maturation and reserve storage, several signaling proteins and transcription factors were identified as targets of ABI4 and/or ABI5. Although only 12% of the ABA- and ABI-dependent transcriptional targets were induced by both ABI factors in 11 day old plants, 40% of those normally expressed in seeds had reduced transcript levels in both abi4 and abi5 mutants. Surprisingly, many of the ABI4 transcriptional targets do not contain the previously characterized ABI4 binding motifs, the CE1 or S box, in their promoters, but some of these interact with ABI4 in electrophoretic mobility shift assays, suggesting that sequence recognition by ABI4 may be more flexible than known canonical sequences. Yeast one-hybrid assays demonstrated synergistic action of ABI4 with ABI5 or related bZIP factors in regulating these promoters, and mutant analyses showed that ABI4 and these bZIPs share some functions in plants
Nucleo-cytoplasmic transport of proteins and RNA in plants
Merkle T. Nucleo-cytoplasmic transport of proteins and RNA in plants. Plant Cell Reports. 2011;30(2):153-176.Transport of macromolecules between the nucleus and the cytoplasm is an essential necessity in eukaryotic cells, since the nuclear envelope separates transcription from translation. In the past few years, an increasing number of components of the plant nuclear transport machinery have been characterised. This progress, although far from being completed, confirmed that the general characteristics of nuclear transport are conserved between plants and other organisms. However, plant-specific components were also identified. Interestingly, several mutants in genes encoding components of the plant nuclear transport machinery were investigated, revealing differential sensitivity of plant-specific pathways to impaired nuclear transport. These findings attracted attention towards plant-specific cargoes that are transported over the nuclear envelope, unravelling connections between nuclear transport and components of signalling and developmental pathways. The current state of research in plants is summarised in comparison to yeast and vertebrate systems, and special emphasis is given to plant nuclear transport mutants
Genetic Evidence for an Indispensable Role of Somatic Embryogenesis Receptor Kinases in Brassinosteroid Signaling
The authors are grateful to the Arabidopsis Biological Resource Center for providing the T-DNA insertion lines discussed in this work. We thank Dr. Yanhai Yin (Iowa State University) for providing anti-BES1 antibody, Dr. Jiayang Li (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for bri1-301 seeds, and Dr. Xing-wang Deng (Yale University) for cop1-4 and cop1-6 seeds as controls.Author Summary Brassinosteroids (BRs) are a group of plant hormones critical for plant growth and development. BRs are perceived by a cell-surface receptor complex including two distinctive receptor kinases, BRI1 and BAK1. Whereas BRI1 is a true BR-binding receptor, BAK1 does not appear to have BR-binding activity. Therefore, BAK1 is likely a co-receptor in BR signal transduction. The genetic significance of BAK1 was not clearly demonstrated in previous studies largely due to functional redundancy of BAK1 and its closely related homologues. It was not clear whether BAK1 plays an essential role or only an enhancing role in BR signaling. In this study, we identified all possible BAK1 redundant genes in the Arabidopsis thaliana genome and generated single, double, triple, and quadruple mutants. Detailed analysis indicated that, without BAK1 and its functionally redundant proteins, BR signaling is completely disrupted, largely because BRI1 has lost its ability to activate downstream components. These studies provide the first piece of loss-of-functional genetic evidence that BAK1 is indispensable to the early events of the BR signaling pathway.Yeshttp://www.plosgenetics.org/static/editorial#pee
PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1
When brassinosteroid (BR) levels are low, the GSK3-like kinase BIN2 phosphorylates and inactivates the BZR1 transcription factor to inhibit growth in plants. BR promotes growth by inducing dephosphorylation of BZR1, but the phosphatase that dephosphorylates BZR1 has remained unknown. Here we identified protein phosphatase 2A (PP2A) as BZR1-interacting proteins using tandem affinity purification. Genetic analyses demonstrated a positive role of PP2A in BR signalling and BZR1 dephosphorylation. Members of the B'regulatory subunits of PP2A directly interact with BZR1's putative PEST domain containing the site of the bzr1-1D mutation. Interaction with and dephosphorylation by PP2A are enhanced by the bzr1-1D mutation, reduced by two intragenic bzr1-1D suppressor mutations, and abolished by deletion of the PEST domain. This study reveals a crucial function of PP2A in dephosphorylating and activating BZR1 and completes the set of core components of the BR-signalling cascade from cell surface receptor kinase to gene regulation in the nucleus
Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max
Brassinosteroids (BRs) play key roles in plant growth and development, and regulate various agricultural traits. Enhanced BR signaling leads to increased seed number and yield in Arabidopsis bzr1-1D (AtBZR1(P234L), gain-of-function mutant of the important transcription factor in BR signaling/effects). BR signal transduction pathway is well elucidated in Arabidopsis but less known in other species. Soybean is an important dicot crop producing edible oil and protein. Phylogenetic analysis reveals AtBZR1-like genes are highly conserved in angiosperm and there are 4 orthologues in soybean (GmBZL1-4). We here report the functional characterization of GmBZL2 (relatively highly expresses in flowers). The P234 site in AtBZR1 is conserved in GmBZL2 (P216) and mutation of GmBZL2(P216L) leads to GmBZL2 accumulation. GmBZL2(P216L) (GmBZL2*) in Arabidopsis results in enhanced BR signaling; including increased seed number per silique. GmBZL2* partially rescued the defects of bri1-5, further demonstrating the conserved function of GmBZL2 with AtBZR1. BR treatment promotes the accumulation, nuclear localization and dephosphorylation/phosphorylation ratio of GmBZL2, revealing that GmBZL2 activity is regulated conservatively by BR signaling. Our studies not only indicate the conserved regulatory mechanism of GmBZL2 and BR signaling pathway in soybean, but also suggest the potential application of GmBZL2 in soybean seed yield