35 research outputs found
Surfactant phosphatidylcholine half-life and pool size measurements in premature baboons developing bronchopulmonary dysplasia
Because minimal information is available about surfactant metabolism in
bronchopulmonary dysplasia, we measured half-lives and pool sizes of
surfactant phosphatidylcholine in very preterm baboons recovering from
respiratory distress syndrome and developing bronchopulmonary dysplasia,
using stable isotopes, radioactive isotopes, and direct pool size
measurements. Eight ventilated premature baboons received (2)H-DPPC
(dipalmitoyl phosphatidylcholine) on d 5 of life, and radioactive
(14)C-DPPC with a treatment dose of surfactant on d 8. After 14 d, lung
pool sizes of saturated phosphatidylcholine were measured. Half-life of
(2)H-DPPC (d 5) in tracheal aspirates was 28 +/- 4 h (mean +/- SEM).
Half-life of radioactive DPPC (d 8) was 35 +/- 4 h. Saturated
phosphatidylcholine pool size measured with stable isotopes on d 5 was 129
+/- 14 micro mol/kg, and 123 +/- 11 micro mol/kg on d 14 at autopsy.
Half-lives were comparable to those obtained at d 0 and d 6 in our
previous baboon studies. We conclude that surfactant metabolism does not
change during the early development of bronchopulmonary dysplasia, more
specifically, the metabolism of exogenous surfactant on d 8 is similar to
that on the day of birth. Surfactant pool size is low at birth, increases
after surfactant therapy, and is kept constant during the first 2 wk of
life by endogenous surfactant synthesis. Measurements with stable isotopes
are comparable to measurements with radioactive tracers and measurements
at autopsy
ATP Depletion and Cell Death in the Neonatal Lamb Ductus Arteriosus
Postnatal constriction of the full-term ductus arteriosus produces cell death and remodeling of the ductus wall. Using a bioluminescence imaging technique, we found that after birth, the lamb ductus develops ATP, glucose, and glycogen depletion in addition to hypoxia. In vitro studies showed that cell death correlates best with ATP depletion and is most marked when both glucose and oxygen are severely depleted; in addition, the degree of ATP depletion found in vivo is sufficient to account for the extensive degree of cell death that occurs after birth. Under hypoxic conditions, the immature ductus is more capable of preserving its ATP supply than the mature ductus as a result of increased glucose availability, glycogen stores, and glucose utilization. However, the immature ductus is just as susceptible as the mature ductus to ATP depletion when glucose supplies are restricted. The extensive degree of cell death that occurs in the newborn ductus after birth is associated primarily with ATP depletion. The increased glycolytic capacity of the immature ductus may enable it to tolerate episodes of hypoxia and nutrient shortage, making it more resistant to developing postnatal cell death and permanent closure
Vasa vasorum hypoperfusion is responsible for medial hypoxia and anatomic remodeling in the newborn lamb ductus arteriosus
This is a non-final version of an article published in final form in KAJINO, HIROKI ; GOLDBARG, SETH ; ROMAN, CHRISTINE ; LIU, BAO MEI ; MAURAY, FRAN脟OISE ; CHEN, YAO QI ; TAKAHASHI, YASUSHI ; KOCH, CAMERON J. ; CLYMAN, RONALD I., Vasa vasorum hypoperfusion is responsible for medial hypoxia and anatomic remodeling in the newborn lamb ductus arteriosus, Pediatric research 51(2), 2002 FEB, pp. 228-235.
AuthorPostnatal constriction of the full-term ductus arteriosus produces hypoxia of the muscle media. This is associated with anatomic remodeling (including smooth muscle death) that prevents subsequent reopening. We used late-gestation fetal and neonatal lambs to determine which factors are responsible for the postnatal hypoxia. Hypoxia [measured by 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide technique] and cell death (measured by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling technique) were observed in regions of the constricted ductus wall within 4 h after delivery. Although there was a decrease in ductus luminal flow during the first 6 h after delivery (measured by Doppler transducer), the amount of oxygen delivered to the ductus lumen (3070 卤 1880 渭mol O_2 路 min^ 路 g^) far exceeded the amount of oxygen consumed by the constricted ductus (0.052 卤 0.021 渭mol O2 路 min^ 路 g^, measured in vitro). Postnatal constriction increased the effective oxygen diffusion distance across the ductus wall to >3脳 the limit that can be tolerated for normal tissue homeostasis. This was owing to both an increase in the thickness of the ductus (fetus, 1.12 卤 0.20 mm; newborn, 1.60 卤 0.17 mm;p 路 g^; newborn, 0.21 卤 0.08 mL 路 min^ 路 g^;p < 0.01). These findings suggest that hypoxic cell death in the full-term ductus is caused primarily by changes in vasa vasorum flow and muscle media thickness and can occur before luminal flow has been eliminated. We speculate that in contrast with the full-term ductus, the preterm ductus is much less likely to develop the degree of hypoxia needed for vessel remodeling inasmuch as it only is capable of increasing its oxygen diffusion distance to 1.3脳 the maximally tolerated limit