28 research outputs found

    A comparison of diagnostic tests for lactose malabsorption - which one is the best?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perceived milk intolerance is a common complaint, and tests for lactose malabsorption (LM) are unreliable. This study assesses the agreement between diagnostic tests for LM and describes the diagnostic properties of the tests.</p> <p>Methods</p> <p>Patients above 18 years of age with suspected LM were included. After oral intake of 25 g lactose, a combined test with measurement of serum glucose (s-glucose) and hydrogen (H2) and methane (CH4) in expired air was performed and symptoms were recorded. In patients with discrepancies between the results, the combined test was repeated and a gene test for lactose non-persistence was added. The diagnosis of LM was based on an evaluation of all tests. The following tests were compared: Increase in H2, CH4, H2+CH4 and H2+CH4x2 in expired air, increase in s-glucose, and symptoms. The agreement was calculated and the diagnostic properties described.</p> <p>Results</p> <p>Sixty patients were included, seven (12%) had LM. The agreement (kappa-values) between the methods varied from 0.25 to 0.91. The best test was the lactose breath test with measurement of the increase in H2 + CH4x2 in expired air. With a cut-off level < 18 ppm, the area under the ROC-curve was 0.967 and sensitivity was 100%. This shows that measurement of CH4 in addition to H2 improves the diagnostic properties of the breath test.</p> <p>Conclusion</p> <p>The agreement between commonly used methods for the diagnosis of LM was unsatisfactory. A lactose breath test with measurement of H2 + CH4x2 in expired air had the best diagnostic properties.</p

    Carbohydrate Metabolism Is Essential for the Colonization of Streptococcus thermophilus in the Digestive Tract of Gnotobiotic Rats

    Get PDF
    Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT) of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8) and p27Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance
    corecore