6 research outputs found

    Influence of plasma processing on recovery and analysis of circulating nucleic acids.

    Get PDF
    Circulating nucleic acids (CNAs) are under investigation as a liquid biopsy in cancer. However there is wide variation in blood processing and methods for isolation of circulating free DNA (cfDNA) and microRNAs (miRNAs). Here we compare the extraction efficiency and reproducibility of 4 commercially available kits for cfDNA and 3 for miRNA using spike-in of reference templates. We also compare the effects of increasing time between venepuncture and centrifugation and differential centrifugation force on recovery of CNAs. cfDNA was quantified by TaqMan qPCR and targeted deep sequencing. miRNA profiles were assessed with TaqMan low-density arrays and assays. The QIAamp(®) DNA Blood Mini and Circulating nucleic acid kits gave the highest recovery of cfDNA and efficient recovery (>90%) of a 564bp spike-in. Moreover, targeted sequencing revealed overlapping cfDNA profiles and variant depth, including detection of HER2 gene amplification, using the Ion AmpliSeq™Cancer Hotspot Panel v2. Highest yields of miRNA and the synthetic Arabidopsis thaliana miR-159a spike-in were obtained using the miRNeasy Serum/Plasma kit, with saturation above 200 µl of plasma. miRNA profiles showed significant variation with increasing time before centrifugation (p 12 years, highlighting the potential for analysis of stored sample biobanks. In the era of the liquid biopsy, standardisation of methods is required to minimise variation, particularly for miRNA

    Induction and regulation of matrix metalloproteinase-12in human airway smooth muscle cells

    Get PDF
    BACKGROUND: The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases. METHODS: Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance. RESULTS: We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction. CONCLUSION: Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma

    Extra-cellular matrix proteins induce matrix metalloproteinase-1 (MMP-1) activity and increase airway smooth muscle contraction in asthma

    Get PDF
    Airway remodelling describes the histopathological changes leading to fixed airway obstruction in patients with asthma and includes extra-cellular matrix (ECM) deposition. Matrix metalloproteinase-1 (MMP-1) is present in remodelled airways but its relationship with ECM proteins and the resulting functional consequences are unknown. We used airway smooth muscle cells (ASM) and bronchial biopsies from control donors and patients with asthma to examine the regulation of MMP-1 by ECM in ASM cells and the effect of MMP-1 on ASM contraction. Collagen-I and tenascin-C induced MMP-1 protein expression, which for tenascin-C, was greater in asthma derived ASM cells. Tenascin-C induced MMP-1 expression was dependent on ERK1/2, JNK and p38 MAPK activation and attenuated by function blocking antibodies against the β1 and β3 integrin subunits. Tenascin-C and MMP-1 were not expressed in normal airways but co-localised in the ASM bundles and reticular basement membrane of patients with asthma. Further, ECM from asthma derived ASM cells stimulated MMP-1 expression to a greater degree than ECM from normal ASM. Bradykinin induced contraction of ASM cells seeded in 3D collagen gels was reduced by the MMP inhibitor ilomastat and by siRNA knockdown of MMP-1. In summary, the induction of MMP-1 in ASM cells by tenascin-C occurs in part via integrin mediated MAPK signalling. MMP-1 and tenascin-C are co-localised in the smooth muscle bundles of patients with asthma where this interaction may contribute to enhanced airway contraction. Our findings suggest that ECM changes in airway remodelling via MMP-1 could contribute to an environment promoting greater airway narrowing in response to broncho-constrictor stimuli and worsening asthma symptoms
    corecore