1,101 research outputs found

    Neck Collar Assessment for People Living With Motor Neuron Disease: Are Current Outcome Measures Suitable?

    Get PDF
    A majority of people living with motor neuron disease (MND) experience weakness of the neck and as a result, experience head drop. This exacerbates problems with everyday activities (eating, talking, breathing, etc). Neck collars are often used to support head drop; however, these are typically designed for prehospitalization settings to manage and brace the cervical region of the spine. As a result, it has been recorded that people living with MND often reject these collars for a variety of reasons but most notably because they are too restricting. The current standardized outcome measures (most notably restricting cervical range of motion) used for neck collars are summarized herein along with whether they are suitable for a bespoke neck collar specifically designed for people living with MND

    Life at both ends of the ladder: education-based identification and its association with well-being and social attitudes

    Get PDF
    Level of formal education is an important divide in contemporary societies; it is positively related to health, well-being, and social attitudes such as tolerance for minorities and interest in politics. We investigated whether education-based identification is a common underlying factor of these education effects. Indeed, education-based identification was stronger among the higher educated, especially for identification aspects that encompass education-based group esteem (i.e., the belief that one’s educational group is worthy and that others think so, too). Furthermore, while group esteem had beneficial effects across educational levels, aspects of identification that were unrelated to group esteem had positive effects for the higher educated but not for the less educated. Thus, the less educated do not benefit from the psychologically nourishing effect of identification that exists for other groups. The stigma and responsibility related to low education could be a common explanation for a wide range of outcomes

    Use of pyridazinediones as extracellular cleavable linkers through reversible cysteine conjugation

    Get PDF
    Herein we report a retro-Michael deconjugation pathway of thiol-pyridazinedione linked protein bioconjugates to provide a novel cleavable linker technology. We demonstrate that the novel pyridazinedione linker does not suffer from off-target modification with blood thiols (e.g., glutathione, human serum albumin (HSA)), which is in sharp contrast to an analogous maleimide linker

    Quantifying Robotic Swarm Coverage

    Full text link
    In the field of swarm robotics, the design and implementation of spatial density control laws has received much attention, with less emphasis being placed on performance evaluation. This work fills that gap by introducing an error metric that provides a quantitative measure of coverage for use with any control scheme. The proposed error metric is continuously sensitive to changes in the swarm distribution, unlike commonly used discretization methods. We analyze the theoretical and computational properties of the error metric and propose two benchmarks to which error metric values can be compared. The first uses the realizable extrema of the error metric to compute the relative error of an observed swarm distribution. We also show that the error metric extrema can be used to help choose the swarm size and effective radius of each robot required to achieve a desired level of coverage. The second benchmark compares the observed distribution of error metric values to the probability density function of the error metric when robot positions are randomly sampled from the target distribution. We demonstrate the utility of this benchmark in assessing the performance of stochastic control algorithms. We prove that the error metric obeys a central limit theorem, develop a streamlined method for performing computations, and place the standard statistical tests used here on a firm theoretical footing. We provide rigorous theoretical development, computational methodologies, numerical examples, and MATLAB code for both benchmarks.Comment: To appear in Springer series Lecture Notes in Electrical Engineering (LNEE). This book contribution is an extension of our ICINCO 2018 conference paper arXiv:1806.02488. 27 pages, 8 figures, 2 table

    Optimal Climate Policy and the Future of World Economic Development

    Get PDF
    How much should the present generations sacrifice to reduce emissions today, in order to reduce the future harms of climate change? Within climate economics, debate on this question has been focused on so-called “ethical parameters” of social time preference and inequality aversion. We show that optimal climate policy similarly importantly depends on the future of the developing world. In particular, although global poverty is falling and the economic lives of the poor are improving worldwide, leading models of climate economics may be too optimistic about two central predictions: future population growth in poor countries, and future convergence in total factor productivity (TFP). We report results of small modifications to a standard model: under plausible scenarios for high future population growth (especially in sub-Saharan Africa) and for low future TFP convergence, we find that optimal near-term carbon taxes could be substantially larger

    A novel thiol-labile cysteine protecting group for peptide synthesis based on a pyridazinedione (PD) scaffold

    Get PDF
    Herein we report a thiol-labile cysteine protecting group based on an unsaturated pyridazinedione (PD) scaffold. We establish compatibility of the PD in conventional solid phase peptide synthesis (SPPS), showcasing this in the on-resin synthesis of biologically relevant oxytocin. Furthermore, we establish the applicability of the PD protecting group towards both microwave-assisted SPPS and native chemical ligation (NCL) in a model system

    The impact of human health co-benefits on evaluations of global climate policy

    Get PDF
    The health co-benefits of CO2 mitigation can provide a strong incentive for climate policy through reductions in air pollutant emissions that occur when targeting shared sources. However, reducing air pollutant emissions may also have an important co-harm, as the aerosols they form produce net cooling overall. Nevertheless, aerosol impacts have not been fully incorporated into cost-benefit modeling that estimates how much the world should optimally mitigate. Here we find that when both co-benefits and co-harms are taken fully into account, optimal climate policy results in immediate net benefits globally, overturning previous findings from cost-benefit models that omit these effects. The global health benefits from climate policy could reach trillions of dollars annually, but will importantly depend on the air quality policies that nations adopt independently of climate change. Depending on how society values better health, economically optimal levels of mitigation may be consistent with a target of 2 °C or lower

    The importance of health co-benefits under different climate policy cooperation frameworks

    Get PDF
    Reducing greenhouse gas emissions has the 'co-benefit' of also reducing air pollution and associated impacts on human health. Here, we incorporate health co-benefits into estimates of the optimal climate policy for three different climate policy regimes. The first fully internalizes the climate externality at the global level via a uniform carbon price (the 'cooperative equilibrium'), thus minimizing total mitigation costs. The second connects to the concept of 'common but differentiated responsibilities' where nations coordinate their actions while accounting for different national capabilities considering socioeconomic conditions. The third assumes nations act only in their own self-interest. We find that air quality co-benefits motivate substantially reduced emissions under all three policy regimes, but that some form of global cooperation is required to prevent runaway temperature rise. However, co-benefits do warrant high levels of mitigation in certain regions even in the self-interested case, suggesting that air quality impacts may expand the range of possible policy outcomes whereby global temperatures do not increase unabated

    Macronutrient processing by temperate lakes: a dynamic model for long-term, large-scale application

    Get PDF
    We developed a model of the biogeochemical and sedimentation behaviour of carbon (C), nitrogen (N) and phosphorus (P) in lakes, designed to be used in long-term (decades to centuries) and large-scale (104 – 105 km2) macronutrient modelling, with a focus on human-induced changes. The model represents settling of inflow suspended particulate matter, production and settling of phytoplankton, decomposition of organic matter in surface sediment, denitrification, and DOM flocculation and decomposition. The model uses 19 parameters, 13 of which are fixed a priori. The remaining 6 were obtained by fitting data from 109 temperate lakes, together with other information from the literature, which between them characterised the stoichiometric incorporation of N and P into phytoplankton via photosynthesis, whole-lake retention of N and P, N removal by denitrification, and the sediment burial of C, N and P. To run the model over the long periods of time necessary to simulate sediment accumulation and properties, simple assumptions were made about increases in inflow concentrations and loads of dissolved N and P and of catchment-derived particulate matter (CPM) during the 20th century. Agreement between observations and calculations is only approximate, but the model is able to capture wide trends in the lakewater and sediment variables, while also making reasonable predictions of net primary production. Modelled results suggest that allochthonous sources of carbon (CPM and dissolved organic matter) contribute more to sediment carbon than the production and settling of algal biomass, but the relative contribution due to algal biomass has increased over time. Simulations for 8 UK lakes with sediment records suggest that during the 20th century average carbon fixation increased 6-fold and carbon burial in sediments by 70%, while the delivery of suspended sediment from the catchments increased by 40% and sediment burial rates of N and P by 131% and 185% respectively
    • …
    corecore