390 research outputs found

    A Case Study Based Approach for Remote Fault Detection Using Multi-Level Machine Learning in A Smart Building

    Get PDF
    Due to the increased awareness of issues ranging from green initiatives, sustainability, and occupant well-being, buildings are becoming smarter, but with smart requirements come increasing complexity and monitoring, ultimately carried out by humans. Building heating ventilation and air-conditioning (HVAC) units are one of the major units that consume large percentages of a buildingโ€™s energy, for example through their involvement in space heating and cooling, the greatest energy consumption in buildings. By monitoring such components effectively, the entire energy demand in buildings can be substantially decreased. Due to the complex nature of building management systems (BMS), many simultaneous anomalous behaviour warnings are not manageable in a timely manner; thus, many energy related problems are left unmanaged, which causes unnecessary energy wastage and deteriorates equipmentโ€™s lifespan. This study proposes a machine learning based multi-level automatic fault detection system (MLe-AFD) focusing on remote HVAC fan coil unit (FCU) behaviour analysis. The proposed method employs sequential two-stage clustering to identify the abnormal behaviour of FCU. The modelโ€™s performance is validated by implementing well-known statistical measures and further cross-validated via expert building engineering knowledge. The method was experimented on a commercial building based in central London, U.K., as a case study and allows remotely identifying three types of FCU faults appropriately and informing building management staff proactively when they occur; this way, the energy expenditure can be further optimized

    Platinum deposition on functionalised graphene for corrosion resistant oxygen reduction electrodes

    Get PDF
    Graphene-related materials are promising supports for electrocatalysts due to their stability and high surface area. Their innate surface chemistries can be controlled and tuned via functionalisation to improve the stability of both the carbon support and the metal catalyst. Functionalised graphenes were prepared using either aryl diazonium functionalisation or non-destructive chemical reduction, to provide groups adapted for platinum deposition. XPS and TGA-MS measurements confirmed the presence of polyethyleneglycol and sulfur-containing functional groups, and provided consistent values for the extent of the reactions. The deposited platinum nanoparticles obtained were consistently around 2 nm via reductive chemistry and around 4 nm via the diazonium route. Although these graphene-supported electrocatalysts provided a lower electrochemical surface area (ECSA), functionalised samples showed enhanced specific activity compared to a commercial platinum/carbon black system. Accelerated stress testing (AST) showed improved durability for the functionalised graphenes compared to the non-functionalised materials, attributed to edge passivation and catalyst particle anchoring

    Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation

    Get PDF
    Pressure-driven, superfast organic solvent filtration membranes have significant practical applications. An excellent filtration membrane should exhibit high selectivity and permeation in aqueous and organic solvents to meet increasing industrial demand. Here, we report an amino functionalized boron nitride (FBN) based filtration membrane with a nanochannel network for molecular separation and permeation. This membrane is highly stable in water and in several organic solvents and shows high transport performance for solvents depending on the membranes' thickness. In addition, the FBN membrane is applicable for solute screening in water as well as in organic solvents. More importantly, the FBN membranes are very stable in acidic, alkaline and oxidative media for up to one month. The fast-flow rate and good separation performance of the FBN membranes can be attributed to their stable networks of nanochannels and thin laminar structure, which provide the membranes with beneficial properties for practical separation and purification processes

    Bacillus anthracis TIR Domain-Containing Protein Localises to Cellular Microtubule Structures and Induces Autophagy

    No full text
    Toll-like receptors (TLRs) recognise invading pathogens and mediate downstream immune signalling via Toll/IL-1 receptor (TIR) domains. TIR domain proteins (Tdps) have been identified in multiple pathogenic bacteria and have recently been implicated as negative regulators of host innate immune activation. A Tdp has been identified in Bacillus anthracis, the causative agent of anthrax. Here we present the first study of this protein, designated BaTdp. Recombinantly expressed and purified BaTdp TIR domain interacted with several human TIR domains, including that of the key TLR adaptor MyD88, although BaTdp expression in cultured HEK293 cells had no effect on TLR4- or TLR2- mediated immune activation. During expression in mammalian cells, BaTdp localised to microtubular networks and caused an increase in lipidated cytosolic microtubule-associated protein 1A/1B-light chain 3 (LC3), indicative of autophagosome formation. In vivo intra-nasal infection experiments in mice showed that a BaTdp knockout strain colonised host tissue faster with higher bacterial load within 4 days post-infection compared to the wild type B. anthracis. Taken together, these findings indicate that BaTdp does not play an immune suppressive role, but rather, its absence increases virulence. BaTdp present in wild type B. anthracis plausibly interact with the infected host cell, which undergoes autophagy in self-defence

    THPP target assignment reveals EchA6 as an essential fatty acid shuttle in mycobacteria

    Get PDF
    Phenotypic screens for bactericidal compounds against drug-resistant tuberculosis are beginning to yield novel inhibitors. However, reliable target identification remains challenging. Here, we show that tetrahydropyrazo[1,5-a]pyrimidine-3-carboxamide (THPP) selectively pulls down EchA6 in a stereospecific manner, instead of the previously assigned target Mycobacterium tuberculosis MmpL3. While homologous to mammalian enoyl-coenzyme A (CoA) hydratases, EchA6 is non-catalytic yet essential and binds long-chain acyl-CoAs. THPP inhibitors compete with CoA-binding, suppress mycolic acid synthesis, and are bactericidal in a mouse model of chronic tuberculosis infection. A point mutation, W133A, abrogated THPP-binding and increased both the in vitro minimum inhibitory concentration and the in vivo effective dose 99 in mice. Surprisingly, EchA6 interacts with selected enzymes of fatty acid synthase II (FAS-II) in bacterial two-hybrid assays, suggesting essentiality may be linked to feeding long-chain fatty acids to FAS-II. Finally, our data show that spontaneous resistance-conferring mutations can potentially obscure the actual target or alternative targets of small molecule inhibitors

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factorsโ€”the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57ยท8% (95% CI 56ยท6โ€“58ยท8) of global deaths and 41ยท2% (39ยท8โ€“42ยท8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211ยท8 million [192ยท7 million to 231ยท1 million] global DALYs), smoking (148ยท6 million [134ยท2 million to 163ยท1 million]), high fasting plasma glucose (143ยท1 million [125ยท1 million to 163ยท5 million]), high BMI (120ยท1 million [83ยท8 million to 158ยท4 million]), childhood undernutrition (113ยท3 million [103ยท9 million to 123ยท4 million]), ambient particulate matter (103ยท1 million [90ยท8 million to 115ยท1 million]), high total cholesterol (88ยท7 million [74ยท6 million to 105ยท7 million]), household air pollution (85ยท6 million [66ยท7 million to 106ยท1 million]), alcohol use (85ยท0 million [77ยท2 million to 93ยท0 million]), and diets high in sodium (83ยท0 million [49ยท3 million to 127ยท5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Assessment of quality of care given to diabetic patients at Jimma University Specialized Hospital diabetes follow-up clinic, Jimma, Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sub-Saharan Africa is currently enduring the heaviest global burden of diabetes and diabetes care in such resource poor countries is far below standards. This study aims to describe the gaps in the care of Ethiopian diabetic patients at Jimma University Specialized Hospital.</p> <p>Methods</p> <p>329 diabetic patients were selected as participants in the study, aged 15 years or greater, who have been active in follow-up for their diabetes for more than 1 year at the hospital. They were interviewed for their demographic characters and relevant clinical profiles. Their charts were simultaneously reviewed for characters related to diabetes and related morbidities. Descriptive statistics was used for most variables and Chi-square test, where necessary, was used to test the association among various variables. P-value of < 0.05 was used as statistical significance.</p> <p>Results</p> <p>Blood glucose determination was done for 98.5% of patients at each of the last three visits, but none ever had glycosylated haemoglobin results. The mean fasting blood sugar (FBS) level was 171.7 ยฑ 63.6 mg/dl and 73.1% of patients had mean FBS levels above 130 mg/dl. Over 44% of patients have already been diagnosed to be hypertensive and 64.1% had mean systolic BP of > 130 and/or diastolic > 80 mmHg over the last three visits. Diabetes eye and neurologic evaluations were ever done for 42.9% and 9.4% of patients respectively. About 66% had urine test for albumin, but only 28.2% had renal function testing over the last 5 years. The rates for lipid test, electrocardiography, echocardiography, or ultrasound of the kidneys during the same time were < 5% for each. Diabetic neuropathy (25.0%) and retinopathy (23.1%) were the most common chronic complications documented among those evaluated for complications.</p> <p>Conclusions</p> <p>The overall aspects of diabetes care at the hospital were far below any recommended standards. Hence, urgent action to improve care for patients with diabetes is mandatory. Future studies examining patterns and prevalence of chronic complications using appropriate parameters is strongly recommended to see the true burden of diabetes.</p
    • โ€ฆ
    corecore