96 research outputs found
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy
Rice contains genetically and ecologically diverse wild and cultivated species that show a
wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy
is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies
of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral
and longitudinal directions and possible evolutionary trends were examined. A significant
inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was
observed, suggesting precise genetic control over these major rice leaf anatomical traits.
Cellular dimensions, measured along three growth axes, were further combined proportionately
to construct three-dimensional (3D) leaf anatomy models to compare the relative size
and orientation of the major cell types present in a fully expanded leaf. A reconstruction of
the ancestral leaf state revealed that the following are the major characteristics of recently
evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an
increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf
anatomy within wild and domesticated rice species has been portrayed in this study, on an
evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa
leaf type’ that we see today in domesticated species
The First Bromeligenous Species of Dendropsophus (Anura: Hylidae) from Brazil\u27s Atlantic Forest
We describe a new treefrog species of Dendropsophus collected on rocky outcrops in the Brazilian Atlantic Forest. Ecologically, the new species can be distinguished from all known congeners by having a larval phase associated with rainwater accumulated in bromeliad phytotelms instead of temporary or lentic water bodies. Phylogenetic analysis based on molecular data confirms that the new species is a member of Dendropsophus; our analysis does not assign it to any recognized species group in the genus. Morphologically, based on comparison with the 96 known congeners, the new species is diagnosed by its small size, framed dorsal color pattern, and short webbing between toes IV-V. The advertisement call is composed of a moderate-pitched two-note call (~5 kHz). The territorial call contains more notes and pulses than the advertisement call. Field observations suggest that this new bromeligenous species uses a variety of bromeliad species to breed in, and may be both territorial and exhibit male parental care
Selection of Salmonella enterica Serovar Typhi Genes Involved during Interaction with Human Macrophages by Screening of a Transposon Mutant Library
The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated
TRY plant trait database - enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
- …