57,590 research outputs found
On the study of oscillons in scalar field theories: A new approach
In this work we study configurations in one-dimensional scalar field theory,
which are time-dependent, localized in space and extremely long-lived called
oscillons. It is investigated how the action of changing the minimum value of
the field configuration representing the oscillon affects its behavior. We find
that one of the consequences of this procedure, is the appearance of a pair of
oscillon-like structures presenting different amplitudes and frequencies of
oscillation. We also compare our analytical results to numerical ones, showing
excellent agreement
Coupled scalar fields Oscillons and Breathers in some Lorentz Violating Scenarios
In this work we discuss the impact of the breaking of the Lorentz symmetry on
the usual oscillons, the so-called flat-top oscillons, and the breathers. Our
analysis is performed by using a Lorentz violation scenario rigorously derived
in the literature. We show that the Lorentz violation is responsible for the
origin of a kind of deformation of the configuration, where the field
configuration becomes oscillatory in a localized region near its maximum value.
Furthermore, we show that the Lorentz breaking symmetry produces a displacement
of the oscillon along the spatial direction, the same feature is present in the
case of breathers. We also show that the effect of a Lorentz violation in the
flat-top oscillon solution is responsible by the shrinking of the flat-top.
Furthermore, we find analytically the outgoing radiation, this result indicates
that the amplitude of the outgoing radiation is controlled by the Lorentz
breaking parameter, in such away that this oscillon becomes more unstable than
its symmetric counterpart, however, it still has a long living nature
Nuclear multifragmentation within the framework of different statistical ensembles
The sensitivity of the Statistical Multifragmentation Model to the underlying
statistical assumptions is investigated. We concentrate on its micro-canonical,
canonical, and isobaric formulations. As far as average values are concerned,
our results reveal that all the ensembles make very similar predictions, as
long as the relevant macroscopic variables (such as temperature, excitation
energy and breakup volume) are the same in all statistical ensembles. It also
turns out that the multiplicity dependence of the breakup volume in the
micro-canonical version of the model mimics a system at (approximately)
constant pressure, at least in the plateau region of the caloric curve.
However, in contrast to average values, our results suggest that the
distributions of physical observables are quite sensitive to the statistical
assumptions. This finding may help deciding which hypothesis corresponds to the
best picture for the freeze-out stageComment: 20 pages, 7 figure
- …
